Skip to main content
Log in

Induction of human vascular endothelial stress fibres by fluid shear stress

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Endothelial cells of the arterial vascular system and the heart contain straight actin filament bundles, of which there are few, if any, in the venous endothelium1–4. Since stress fibre-containing endothelial cells within the vascular system tend to be located at sites exposed to particularly high shear stress of blood flow, we have investigated, in an experimental rheological system (Fig. 1), the response of the endothelial actin filament skeleton to controlled levels of fluid shear stress. Here we report that endothelial stress fibres can be induced by a 3-h exposure of confluent monolayer cultures of human vascular endothelium to a fluid shear stress of 2 dynes cm−2, approximately the stress occurring in human arteries in vivo. Fourfold lower levels of shear stress that normally occur only in veins, had no significant effect on the endothelial actin filament system. The formation of endothelial stress fibres in response to critical levels of fluid shear stress is probably a functionally important mechanism that protects the endothelium from hydrodynamic injury and detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drenckhahn, D. Prog. appl. Microcirculation 1, 53–70 (1983).

    Article  Google Scholar 

  2. Drenckhahn, D., Gröschel-Stewart, U., Kendrick-Jones, J. & Scholey, J. Eur. J. Cell Biol. 30, 100–111 (1983).

    CAS  PubMed  Google Scholar 

  3. Gabbiani, G., Gabbiani, F., Lombardi, D. & Schwartz, S. M. Proc. natn. Acad. Sci. U.S.A. 80, 2361–2364 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Wong, A. J., Pollard, T. D. & Herman, I. Science 219, 867–869 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Jaffé, E. A., Nachman, R. L., Becker, D. G. & Minick, C. R. J. clin. Invest. 52, 2745–2756 (1973).

    Article  Google Scholar 

  6. Gospodarowicz, D., Vlodavsky, J. & Savion, N. J. supramolec. Struct. 13, 339–372 (1980).

    Article  CAS  Google Scholar 

  7. Faulstich, H., Trischmann, H. & Mayer, D. Expl Cell Res. 144, 73–82 (1983).

    Article  CAS  Google Scholar 

  8. Drenckhahn, D. & Mannherz, H. Eur. J. Cell Biol. 30, 167–176 (1983).

    CAS  PubMed  Google Scholar 

  9. Kalnins, V. I. & Subrahmanyan, L. Eur. J. Cell Biol. 24, 36–44 (1981).

    CAS  PubMed  Google Scholar 

  10. Goldman, R. D., Milsted, A., Schloss, J. A., Starger, J. & Yerna, M. J. A. Rev. Physiol. 41, 703–722 (1979).

    Article  CAS  Google Scholar 

  11. Gröschel-Stewart, U. & Drenckhahn, D. Collagen Rel. Res. 2, 381–463 (1982).

    Article  Google Scholar 

  12. Dewey, C. F., Bussolari, S. R., Gimbrone, M. A. & Davies, P. F. J. biomech. Eng. 103, 177–185 (1981).

    Article  Google Scholar 

  13. Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. W. & Wohlfarth-Bottermann, K. E. Cell Tissue Res. 166, 427–428 (1976).

    Article  CAS  Google Scholar 

  14. Kreis, T. E. & Birchmeyer, W. Cell 22, 555–561 (1980).

    Article  CAS  Google Scholar 

  15. Ross, R. & Glomset, J. A. New Engl. J. Med. 295, 369–377, 420–425 (1976).

    Article  CAS  Google Scholar 

  16. Hammersen, F. Adv. Microcirculation 9, 95–134 (1980).

    Google Scholar 

  17. Langille, B. L. & Adamson, S. L. Circulation Res. 48, 481–488 (1981).

    Article  CAS  Google Scholar 

  18. Buckley, I. K. & Porter, K. Protoplasma 64, 350–380 (1967).

    Article  Google Scholar 

  19. White, G. E., Fujiwara, K., Shefton, E., Dewey, C. F. & Gimbrone, M. A. Fedn Proc. 41, 321 (Abstr.) (1982).

    Google Scholar 

  20. Schmidt-Schönbein, H., Gosen, J. V., Heinrich, L., Klose, H. J. & Vogeler, E. Microvasc. Res. 6, 366–376 (1973).

    Article  Google Scholar 

  21. Kiesewetter, H. et al. Biomed. Techn 27, 209–213 (1982).

    Article  CAS  Google Scholar 

  22. Maciag, T., Cerundolo, J., Ilfley, S., Kelley, P. R. & Forand, R. Proc. natn. Acad. Sci. U.S.A. 76, 5674–5678 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, RP., Gräfe, M., Schnittler, H. et al. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307, 648–649 (1984). https://doi.org/10.1038/307648a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307648a0

  • Springer Nature Limited

This article is cited by

Navigation