Skip to main content
Log in

Histone H5 can correctly align randomly arranged nucleosomes in a defined in vitro system

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In eukaryotic cells, DNA is packed into regularly spaced chromatin subunits called nucleosomes. The average distance between nucleosomes (the repeat length) varies in a tissue- and species-specific manner, with values ranging from about 160 to 240 DNA base pairs (bp)1. Thus, it has been recognized that the repeat length could be one of the factors underlying selective gene expression. In cells growing in culture, the characteristic repeat length for that type of cell seems to arise from an immature chromatin structure in which nucleosomes are initially irregularly spaced or are arranged in small closely packed clusters2–5. At present no in vitro system has been described which is capable of reconstituting the mature physiological nucleosome spacing from purified chromatin components. Moreover, neither the factors necessary for spacing nor the reaction mechanism are known. We describe here an in vitro system that can restore the native subunit spacing in rearranged chromatin samples which have irregularly spaced nucleosomes similar to the situation apparent in newly replicated chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kornberg, R. D. A. Rev. Biochem. 46, 931–954 (1977).

    CAS  Google Scholar 

  2. Seale, R.L. Proc. natn. Acad. Sci. U.S.A. 75, 2717–2721 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Levy, A. & Jakob, K. M. Cell 14, 259–267 (1978).

    Article  CAS  Google Scholar 

  4. Murphy, R. E., Wallace, R. B. & Bonner, J. Proc. natn. Acad. Sci. U.S.A. 77, 3336–3340 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Jackson, V., Marshall, S. & Chalkley, R. Nucleic Acids Res. 9, 4563–4581 (1981).

    Article  CAS  Google Scholar 

  6. Morris, N. R. Cell 9, 627–632 (1976).

    Article  CAS  Google Scholar 

  7. Spadafora, C., Oudet, P. & Chambon, P. Eur. J. Biochem. 100, 225–235 (1979).

    Article  CAS  Google Scholar 

  8. Weischet, W. O. Nucleic Acids Res. 7, 291–304 (1979).

    Article  CAS  Google Scholar 

  9. Künzler, P. & Stein, A. Biochemistry (in the press).

  10. Germond, J. E., Bellard, M., Oudet, P. & Chambon, P. Nucleic Acids Res. 3, 3173–3192 (1976).

    Article  CAS  Google Scholar 

  11. Simpson, R. T. Biochemistry 17, 5524–5531 (1978).

    Article  CAS  Google Scholar 

  12. Thoma, F., Kollar, TH. & Klug, A. J. Cell Biol. 83, 403–427 (1979).

    Article  CAS  Google Scholar 

  13. Laskey, R. A. & Earnshaw, W. C. Nature 286, 763–767 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Laskey, R. A., Mills, A. D. & Morris, N. R. Cell 10, 237–243 (1977).

    CAS  PubMed  Google Scholar 

  15. Nelson, T., Hsieh, T-S. & Brutlag, D. Proc. natn. Acad. Sci. U.S.A. 76, 5510–5514 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Prunell, A. & Kornberg, R. D. J. molec. Biol. 154, 515–523 (1982).

    Article  CAS  Google Scholar 

  17. Ruiz-Carrillo, A., Puigdomenech, P., Eder, G. & Lurz, R. Biochemistry 19, 2544–2554 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stein, A., Künzler, P. Histone H5 can correctly align randomly arranged nucleosomes in a defined in vitro system. Nature 302, 548–550 (1983). https://doi.org/10.1038/302548a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302548a0

  • Springer Nature Limited

Navigation