Skip to main content
Log in

Sequence and structural homologies among type I and type II interferons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Interferons are proteins with antiviral, antitumour and immunomodulator activities, which are secreted in response to various inducers1. The interferons have been classified into two categories on the basis of their biological and physical properties. Type I interferons include fibroblast interferon (IFN-β)2,3 and the leukocyte family of interferons which is composed of at least 10 subspecies4–8. Each member of the type I interferons contains ∼165 amino acids, is acid-stable, and competes for the same receptors9; furthermore, identical amino acids occupy invariant positions in 23% of their amino acid sequences7. In contrast, type II interferon (IFN-γ) is produced in response to mitogens and antigenic stimuli10, contains ∼146 amino acid residues11, is not acid-stable, and displays no measurable binding to type I interferon receptors9. The nucleotide sequence of the cDNA coding for IFN-γ has recently been reported11, and no statistically significant sequence homology was detected between the deduced amino acid sequences of IFN-γ and any of the type I interferons11,12. To determine whether there might be structural similarities between IFN-γ and the type I interferons, we have conducted a predictive analysis of the secondary structure of these proteins13,14. IFN-γ as well as each of the type I interferons contain a segment with a high potential to form an amphiphilic α-helix of approximately the same length and hydrophobic/hydrophilic balance (Fig. 1). As we report here, the identification of these segments generates an alignment of sequences which reveals previously undetected sequence homologies among the type I and II interferons (Fig. 2). Thus, we propose that there is a common evolutionary ancestor for both type I and type II interferons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, W. E. II The Interferon System (Springer, New York, 1979).

    Book  Google Scholar 

  2. Knight, E Jr. et al. Science 206, 525–526 (1980).

    Article  ADS  Google Scholar 

  3. Taniguchi, T., Ohno, S., Fuji-Kuriyama, Y. & Muramatsu, M. Gene 10, 11–15 (1980).

    Article  CAS  Google Scholar 

  4. Allen, G. & Fantes, K. H. Nature 287, 408–411 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Zoon, K. C. in The Biology of the Interferon System (eds deMaeyer, E., Galasso, G. & Schellekens, H.) 47–55 (Elsevier, Amsterdam, 1981).

    Google Scholar 

  6. Levy, W. P. et al. Proc. natn. Acad. Sci. U.S.A. 78, 6186–6190 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Goeddel, D. V. et al. Nature 290, 20–26 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Streuli, M., Nagata, S. & Weissman, C. Science 209, 1343–1347 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Branca, A. A. & Baglioni, C. Nature 294, 768–770 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Morris, A. G., Lin, Y-L. & Askonas, B. A. Nature 295, 150–152 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Gray, P. W. et al. Nature 295, 503–508 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Epstein, L. E. Nature 295, 453–454 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Edelstein, D., Kézdy, F. J., Scanu, A. M. & Shen, B. W. J. Lipid Res. 20, 143–153 (1979).

    CAS  PubMed  Google Scholar 

  14. Chou, P. Y. & Fasman, G. D. Adv. Enzym. 47, 45–148 (1978).

    CAS  Google Scholar 

  15. Haber, J. E. & Koshland, D. E. Jr J. molec. Biol. 50, 617–639 (1970).

    Article  CAS  Google Scholar 

  16. James, M. N. G., Delbaere, L. T. J. & Brayer, G. D. Can. J. Biochem. 56, 396–402 (1978).

    Article  CAS  Google Scholar 

  17. Keim, P., Heinrikson, R. L. & Fitch, W. M. J. molec. Biol. 151, 179–197 (1981).

    Article  CAS  Google Scholar 

  18. Matthews, B. W. Biochim. biophys. Acta 405, 442–451 (1975).

    Article  CAS  Google Scholar 

  19. Shiffer, M. & Edmundson, A. B. Biophys. J. 7, 121–135 (1967).

    Article  Google Scholar 

  20. Segrest, J. P., Jackson, R. L., Morrisett, J. D. & Gotto, A. M. Jr FEBS Lett. 38, 247–253 (1974).

    Article  CAS  Google Scholar 

  21. Fukushima, D. et al. J. Am. chem. Soc. 101, 3703–3704 (1979).

    Article  CAS  Google Scholar 

  22. Lim, V. I. J. molec. Biol. 88, 857–872 (1974).

    Article  CAS  Google Scholar 

  23. Doolittle, R. F. Science 214, 149–214 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Zav'yalov, V. P. & Danesyuk, A. I. Immun. Lett. 4, 7–14 (1982).

    Article  CAS  Google Scholar 

  25. Sternberg, J. E. & Cohen, F. E. Int. J. biol. Macromolec. 4, 137–144 (1982).

    Article  CAS  Google Scholar 

  26. Gray, P. W. & Goeddel, D. V. Nature 298, 859–863 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Craik, C. S., Buchman, S. R. & Beychok, S. Proc. natn. Acad. Sci. U.S.A. 77, 1384–1388 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeGrado, W., Wasserman, Z. & Chowdhry, V. Sequence and structural homologies among type I and type II interferons. Nature 300, 379–381 (1982). https://doi.org/10.1038/300379a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300379a0

  • Springer Nature Limited

This article is cited by

Navigation