Skip to main content
Log in

Genetic recombination and directional selection for DDT resistance in Drosophila melanogaster

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

It is generally agreed that recombination offers a long-term evolutionary advantage1,2. It is argued, however, that because genetic variability exists for recombination rates in natural populations, response to immediate demands for adaptation should result in reduced recombination regardless of the long-term consequences. Nevertheless, genetic recombination persists. Numerous models have been developed to examine this fact1,2. There exists, however, a notable lack of empiricism on the recombination question. Here we demonstrate in Drosophila that the response of a polygenic character (DDT resistance) to directional selection is sufficiently correlated with the genetic variability generated by recombination to bring about a corresponding increase in recombination rate. We draw attention to the relationship of these results to existing models, notably the ‘hitch-hiking’ model3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Felsenstein, J. Genetics 78, 737–756 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Maynard Smith, J. Nature 268, 693–696 (1977).

    Article  Google Scholar 

  3. Strobeck, C., Maynard Smith, J. & Charlesworth, B. Genetics 82, 547–558 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Merrell, D. J. & Underhill, J. C. J. econ. Ent. 49, 300–306 (1956).

    Article  Google Scholar 

  5. Finney, D. J. Probit Analysis 4th edn (Cambridge University Press, Cambridge, 1971).

    MATH  Google Scholar 

  6. Epstein, S. S. & Shafner, H. Nature 219, 385–386 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Hart, M. M., Whang-Peng, J., Sieber, S. M., Fabro, S. & Adamson, R. H. Xenobiotica 2, 567–574 (1972).

    Article  CAS  Google Scholar 

  8. Luers, H. Naturwissenschaften 40, 293–294 (1953).

    Article  ADS  CAS  Google Scholar 

  9. Pielow, D. P. Can. J. Zool. 30, 375–377 (1952).

    Article  Google Scholar 

  10. Rabello, M. N. et al. Mutat. Res. 28, 449–454 (1975).

    Article  CAS  Google Scholar 

  11. Vogel, E. Mutat. Res. 16, 157–164 (1972).

    Article  CAS  Google Scholar 

  12. Maynard Smith, J. Genet. Res. 35, 269–277 (1980).

    Article  Google Scholar 

  13. Feldman, M. W., Christianson, F. B. & Brooks, L. D. Proc. natn. Acad. Sci. U.S.A. 77, 4838–4841 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Whittaker, R. H. Brookhaven Symp. Biol. 22, 178–185 (1969).

    CAS  PubMed  Google Scholar 

  15. Levin, D. Am. Nat. 109, 437–451 (1975).

    Article  Google Scholar 

  16. Gilbert, L. E. in Coevolution of Animals and Plants (eds Gilbert, L. E. & Raven, P. H.) 210–240 (University of Texas Press, Austin, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flexon, P., Rodell, C. Genetic recombination and directional selection for DDT resistance in Drosophila melanogaster. Nature 298, 672–674 (1982). https://doi.org/10.1038/298672a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298672a0

  • Springer Nature Limited

This article is cited by

Navigation