Skip to main content
Log in

Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Many neurones, when depolarized, exhibit two components of outward K+ current—the voltage-sensitive delayed rectifier current originally described in squid axons by Hodgkin and Huxley1, and an additional current triggered by the entry of Ca2+ ions2. These two currents have been termed IK and IC, respectively3. Previous experiments have indicated that both forms of K+ current are also present in vertebrate sympathetic neurones4–6. We have now studied the properties of IC in bullfrog sympathetic neurones, uncontaminated with IK, by injecting Ca2+ ions into the cells and measuring the resultant outward currents under voltage-clamp, in the manner previously used for large molluscan neurones7,8. We find three interesting properties of IC in these vertebrate neurones. First, it shows strong voltage sensitivity independent of the voltage sensitivity of the Ca2+ channels (which have been bypassed by the injection technique). Second, IC activates and deactivates very rapidly (τC≤20 ms at 0 mV), with stepped changes in membrane potential. Current fluctuation analysis and patch-clamp records of single-channel currents yielded evidence for appropriate short-lifetime ionic channels with a maximum conductance of ∼100 pS. Finally IC in ganglion cells is highly sensitive to external tetraethylammonium. We deduce that in these neurones IC is a fast current which can contribute a substantial fraction to the repolarizing current during an action potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 116, 449–472 (1952a).

    Article  CAS  Google Scholar 

  2. Meech, R. W. A. Rev. Biophys. Bioengng 7, 1–18 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Thompson, S. H. J. Physiol., Lond. 265, 465–488 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Minota, S. Jap. J. Physiol. 24, 501–512 (1974).

    Article  CAS  Google Scholar 

  5. McAfee, D. A. & Yarowski, P. J. J. Physiol., Lond. 290, 507–523 (1979).

    Article  CAS  Google Scholar 

  6. Adams, P. R., Constanti, A. & Brown, D. A. Fedn Proc. 39, 2063 (1980).

    Google Scholar 

  7. Gorman, A. L. F. & Hermann, A. J. Physiol., Lond. 296, 393–410 (1979).

    Article  CAS  Google Scholar 

  8. Gorman, A. L. F. & Thomas, M. V. J. Physiol., Lond. 308, 287–313 (1980).

    Article  CAS  Google Scholar 

  9. Brown, D. A. & Adams, P. R. Nature 283, 673–676 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Hermann, A. & Hartung, K. Pflügers Arch. ges. Physiol. 389, R22 (1981).

    Google Scholar 

  11. Adams, P. R. Adv. physiol. Sci. 4, 135–138 (1981).

    CAS  Google Scholar 

  12. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–692 (1973).

    Article  CAS  Google Scholar 

  13. Sigworth, F. J. Biophys. J. 35, 289–300 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Siggins, G. R., Gruol, D. L., Padjen, A. L. & Forman, D. S. Nature 270, 263–265 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Horn, R. & Patlak, J. Proc. natn. Acad. Sci. U.S.A. 77, 6930–6934 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Hamill, O., Marty, A., Neher, E. Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  17. Marty, A. Nature 291, 497–500 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Pallotta, B. S., Magleby, K. L. & Barrett, J. N. Nature 293, 471–474 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Szabo, G. Biophys. J. 33, 64a (1981).

    Google Scholar 

  20. Lux, H. D., Neher, E. & Marty, A. Pflügers Arch. ges. Physiol. 389, 293–295 (1981).

    Article  CAS  Google Scholar 

  21. Meech, R. W. & Thomas, R. C. J. Physiol., Lond. 298, 111–129 (1980).

    Article  CAS  Google Scholar 

  22. Lux, H. D. Molluscan Nerve Cells (eds Koester, J. & Byrne, J. H.) 105–114 (Cold Spring Harbor Laboratory, New York, 1980).

    Google Scholar 

  23. Meech, R. W. & Standen, N. B. J. Physiol., Lond. 249, 211–239 (1975).

    Article  CAS  Google Scholar 

  24. Hermann, A. & Gorman, A. L. F. J. gen. Physiol. 78, 87–110 (1981).

    Article  CAS  Google Scholar 

  25. Kostyuk, P. G., Doroshenko, P. A. & Tsyndrenko, A. Neuroscience 5, 2187–2192 (1980).

    Article  CAS  Google Scholar 

  26. Adams, P. R., Brown, D. A. & Constanti, A. J. Physiol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, P., Constanti, A., Brown, D. et al. Intracellular Ca2+ activates a fast voltage-sensitive K+ current in vertebrate sympathetic neurones. Nature 296, 746–749 (1982). https://doi.org/10.1038/296746a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296746a0

  • Springer Nature Limited

This article is cited by

Navigation