Skip to main content
Log in

Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The presence of a calcium-activated potassium channel in some mammalian red cell membranes makes them useful experimental models in which to study the properties of similar mechanisms believed to be involved in the control of membrane potential and conductance, at rest and during activity, in many other cells. However, vesicles prepared from human red cell membranes by the method of Steck et al.1, whether inside-out (IOVs) or right-side out (ROVs), either failed to show any Ca2+-activated component of K+(Rb+) fluxes2 or showed only a very reduced calcium sensitivity and K+/Na+ selectivity3. This is surprising because there is good functional preservation of other transport mechanisms, such as the anion carrier4, Ca2+ pump5 and Na+ pump6. Our failure to confirm reports7 that the calcium response could be restored in ‘silent’ IOVs by addition of protein concentrates from red cell lysates prompted the search for and discovery of vesiculation procedures which produced ion-tight IOVs in a single step, with minimum loss of membrane components and transport properties8–11. We report here (1) the conditions which favour preservation or loss of the Ca2+-activated component of the 86Rb efflux from one-step IOVs, (2) an approximate estimate of the number of Ca2+-activated K+ channels per red cell, and (3) that individual Ca2+-activated K+ channels respond in an all or nothing fashion to Ca2+ activation and differ in their threshold sensitivity to ionized calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steck, T. L., Weinstein, R. S., Straus, J. H. & Wallach, D. F. H. Science 168, 255–257 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Grinstein, S. & Rothstein, A. Biochim. biophys. Acta 508, 236–245 (1978).

    Article  CAS  Google Scholar 

  3. Sze, H. & Solomon, A. K. Biochim. biophys. Acta 554, 180–194 (1979).

    Article  CAS  Google Scholar 

  4. Rothstein, A., Ramjeesingh, M. & Grinstein, S. Alfred Benzon Symp. 14, 329–340 (1980).

    Google Scholar 

  5. Macintyre, J. D. & Green, J. W. Biochim. biophys. Acta 510, 373–377 (1978).

    Article  CAS  Google Scholar 

  6. Lee, K. H. & Blostein, R. Nature 285, 338–339 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Sarkadi, B., Szebeni, J. & Gardos, G. Alfred Benzon Symp. 14, 220–231 (1980).

    Google Scholar 

  8. Lew, V. L., Muallem, S. & Seymour, C. A. J. Physiol., Lond. 307, 36–37P (1980).

    Google Scholar 

  9. Lew, V. L. & Seymour, C. A. J. Physiol., Lond. 308, 8–9P (1980).

    Google Scholar 

  10. Bookchin, R. M., Raventos, C. & Lew, V. L. Proc. 5th int. Conf. Red Cell Metabolism and Function (ed. Brewer, G. J.) (Liss, New York, in the press).

  11. Lew, V. L. & Seymour, C. A. in Techniques in Lipid & Membrane Biochemistry (eds Kornberg, H. L. et al.) (Elsevier, Amsterdam, in the press).

  12. Dunham, P. B. & Hoffman, J. F. Proc. natn. Acad. Sci. U.S.A. 66, 936–943 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Erdmann, E. & Hasse, W. J. Physiol., Lond. 251, 671–682 (1975).

    Article  CAS  Google Scholar 

  14. Blum, R. M. & Hoffmann, J. F. J. Membrane Biol. 6, 315–328 (1971).

    Article  CAS  Google Scholar 

  15. Muallem, S. & Karlish, S. J. D. FEBS Lett. 107, 209–212 (1979).

    Article  CAS  Google Scholar 

  16. Porzig, H. J. Physiol., Lond. 249, 27–50 (1975).

    Article  CAS  Google Scholar 

  17. Simons, T. J. B. J. Physiol., Lond. 256, 227–244 (1976).

    Article  CAS  Google Scholar 

  18. Garcia-Sancho, J., Sanchez, A. & Herreros, B. Biochim. biophys. Acta 556, 118–130 (1979).

    Article  CAS  Google Scholar 

  19. Lew, V. L. & Ferreira, H. G. Nature 263, 336–338 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Riordan, J. R. & Passow, H. Biochim. biophys. Acta 249, 601–605 (1971).

    Article  CAS  Google Scholar 

  21. Riordan, J. F. & Passow, H. in Comparative Physiology (eds Bolis, L., Schmidt-Nielsen, K. & Maddrell, S. H. P.) 543–581 (North-Holland, Amsterdam, 1973).

    Google Scholar 

  22. Lew, V. L. in Comparative Biochemistry and Physiology of Transport (eds Bolis, L., Bloch, K., Luria, S. E. & Lynen, F.) 310–316 (North-Holland, Amsterdam, 1974).

    Google Scholar 

  23. Knauf, P. A., Riordan, J. F., Schuhmann, B. & Passow, H. in Comparative Biochemistry and Physiology of Transport (eds Bolis, L., Bloch, K., Luria, S. E. & Lynen, F.) 305–309 (North-Holland, Amsterdam, 1974).

    Google Scholar 

  24. Heinz, A. & Passow, H. J. Membrane Biol. 54, 119–131 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, V., Muallem, S. & Seymour, C. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes. Nature 296, 742–744 (1982). https://doi.org/10.1038/296742a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296742a0

  • Springer Nature Limited

This article is cited by

Navigation