Skip to main content
Log in

Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The exposure of red cell ghosts to external Ca++ and K+ leads to a rapid net K+ efflux. Preincubation of the ghosts for various lengths of time in the absence of K+ in the external medium prior to a challenge with maximally effective concentrations of Ca++ and K+ renders the ghosts unresponsive to that challenge with a half-time of about 7–10 min. Preincubation at a range of K+ concentrations for a fixed length of time (60 min) prior to the challenge revealed that K+ concentrations of about 500 μm or more suffice to maintain the K+ channel in a maximally responsive state for at least 60 min. These K+ concentrations are considerably lower than the K+ concentrations required to make the responsive channel respond with a maximal rate of K+ efflux. Thus, external K+ is not only necessary to induce the permeability change but also to maintain the transport system in a functional state.

The presence of Mg++ or ethylenediamine-tetraacetic acid (EDTA) in the K+-free preincubation media preserves the responsiveness to a challenge with Ca++ plus K+. In contrast to external K+, the presence of external Ca++ does not reduce but rather enhances the loss of responsiveness. An excess of EDTA prevents the effects of Ca++ while washes with EDTA after exposure to Ca++ do not reverse them.

In red cell ghosts that contain Ca++ buffers, the transition from a responsive to a nonresponsive state incubation in the absence of external K+ is enhanced. The effects of incubation in the presence of Ca++ in K+-free media are reversed; external Ca++ now reduces the rate at which the responsiveness is lost. The loss of responsiveness after incubation in K+-free media prior to a challenge with external K+ and internal Ca++ does also take place when K+-efflux from red cell ghosts is measured by means of42K+ into media that have the same K+ concentrations as the ghost interior. This confirms that the effects of K+-free incubation are due to the modification of the K+-selective channel rather than to an inhibition of diffusive Cl-efflux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TRIS:

Tris (hydroxymethyl) aminomethan

References

  • Blum, R.M., Hoffman, J.F. 1971. The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells.J. Membrane Biol. 6:315

    Google Scholar 

  • Blum, R.M., Hoffman, J.F. 1972. Ca-induced K transport in human red cells: Localisation of the Ca-sensitive site to the inside of the membrane.Biochem. Biophys. Res. Commun. 46:1146

    Google Scholar 

  • Bodemann, H., Passow, H. 1972. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis.J. Membrane Biol. 8:1

    Google Scholar 

  • Dissing, S., Lassen, U.V., Scharff, O. 1979. Magnesium inhibition of hyperpolarization ofAmphiuma red cell membrane induced by calcium and A 23187.J. Physiol. (London) 289:29P

    Google Scholar 

  • Ferreira, H.G., Lew, V.L. 1976. Use of ionophore A 23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internalCa.Nature (London) 259:47

    Google Scholar 

  • Gárdos, G. 1958a. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653

    Google Scholar 

  • Gárdos, G. 1958b. Effect of ethylenediamine-tetra-acetate on the permeability of human erythrocytes.Acta Physiol. Acad. Sci. Hung. 14:1

    Google Scholar 

  • Knauf, P.A., Riordan, J.R., Schuhmann, B., Wood-Guth, I., Passow, H. 1975. Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts.J. Membrane Biol. 25:1

    Google Scholar 

  • Kregenow, F.M. 1962. Metabolic control of passive transport and exchange diffusion of Na and K in human red cells. M.D. Thesis. Yale University, New Haven

    Google Scholar 

  • Kregenow, F.M., Hoffman, J.F. 1962. Metabolic control of passive transport and exchange diffusion of Na and K in human red cells. (Abstr.) Biophysical Society, Washington, D.C.

    Google Scholar 

  • Kregenow, F.M., Hoffmann, J.F. 1972. Some kinetics and metabolic characteristics of calcium-induced potassium transport in human red cells.J. Gen. Physiol. 60:406

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1976. Effect of calcium on the membrane potential ofAmphiuma red cells.J. Membrane Biol. 26:51

    Google Scholar 

  • Lassen, U.V., Lew, V.L., Pape, L., Simonsen, L.O. 1978. Transient activation of the Ca++-sensitive K+-channel in red cells by external K+.In: Abstracts of Communications presented at the Meeting of the European Red Cell Club, Sandbjerg. (Abstr.)

  • Lepke, S., Passow, H. 1968. Effects of fluoride on potassium and sodium permeability of the erythrocyte membrane.J. Gen. Physiol. 51:365

    Google Scholar 

  • Lew, V.L. 1971a. On the ATP dependence of the Ca2+-induced increase in K+ permeability observed in human red cells.Biochim. Biophys. Acta 233:827

    Google Scholar 

  • Lew, V.L. 1971b. Effect of ouabain on the Ca2+-dependent increase in K+ permeability in depleted guinea-pig red cells.Biochim. Biophys. Acta 249:236

    Google Scholar 

  • Lew, V.L. 1974. On the mechanism of the Ca-induced increase in K permeability observed in human red cell membranes.In: Comparative Biochemistry and Physiology of Transport. L. Bolis, S.E. Luria and R. Lynen, editors. pp. 310–316. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1976. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes.Nature (London) 263:336

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.In: Current Topics in Membranes and Transport, Vol. 10. F. Bronner and A. Kleinzeller, editors. pp. 217–277. Academic Press, New York-San Francisco-London

    Google Scholar 

  • Lew, V.L., Beaugé, L. 1979. Passive cation fluxes in red cell membranes.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Vol. II. pp. 81–115. Springer Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Manninen, V. 1970. Movements of sodium and potassium ions and their tracers in propanol-treated red cells and diaphragm muscle.Acta Physiol. Scand. suppl. 355:1

    Google Scholar 

  • Øskov, S.L. 1935. Untersuchungen über den Einfluß von Kohlensäure und Blei auf die Permeabilittät der Blutkörperchen für Kalium und Rubidium.Biochem. Z. 279:250

    Google Scholar 

  • Passow, H. 1961. Zusammenwirken von Membranstruktur und Zellstoffwechsel bei der Regulierung der Ionenpermeabilität roter Blutkörperchen.In: Biochemie des aktiven Transports. 12. Colloquium der Gesellschaft für physiologische Chemie in Mosbach, Baden. pp. 54–99. Springer, Berlin-Göttingen-Heidelberg

    Google Scholar 

  • Passow, H. 1963. Metabolic control of the passive permeability for potassium ions.In: Cell Interface Reactions. A.D. McLaren, P. Mitchell and H. Passow, editors. pp. 57–107. Scholar's Library, New York

    Google Scholar 

  • Passow, H. 1964. Ion and water permeability of the red blood cell.In: The Red Blood Cell. C. Bishop and D.M. Surgenor, editors. pp. 71–145. Academic Press, New York

    Google Scholar 

  • Passow, H. 1969. Ion permeability of erythrocyte ghosts.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stämpfli, editors. pp. 22–27. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Perrin, O.D., Dempsey, B. 1974. Metall-ion buffers.In: Buffers for pH and Metall Ion Control. D.D. Perrin and B. Dempsey, editors. pp. 94–102. Chapman and Hall, London

    Google Scholar 

  • Porzig, H. 1975. Comparative study of the effects of propanolol and tetracaine on cation movements in resealed human red cell ghosts.J. Physiol. (London) 249:27

    Google Scholar 

  • Riordan, J.R., Passow, H. 1971. Effects of calcium and lead on potassium permeability of human erythrocyte ghosts.Biochim. Biophys. Acta 249:601

    Google Scholar 

  • Riordan, J.R., Passow, H. 1974. The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts.In: Comparative Physiology. L. Bolis, K. Schmidt-Nielsen and S.H.P. Madrell, editors. pp. 543–581. North-Holland, Amsterdam-London

    Google Scholar 

  • Romero, P.J., Whittam, R.R. 1171. The control by internal calcium of membrane permeability to sodium and potassium.J. Physiol. (London) 214:481

    Google Scholar 

  • Schwoch, G., Passow, H. 1973. Preparation and properties of human erythrocyte ghosts.Mol. Cell. Biochem. 2:197

    Google Scholar 

  • Simons, T.J.B. 1976a. The preparation of human red cell ghosts containing calcium buffers.J. Physiol. (London) 256:209

    Google Scholar 

  • Simons, T.J.B. 1976b. Calcium-dependent potassium exchange in human red cell ghosts.J. Physiol. (London) 256:227

    Google Scholar 

  • Simons, T.J.B. 1979. Actions of a carbocyanine dye on calcium-dependent potassium transport in human red cell ghosts.J. Physiol. (London) 288:481

    Google Scholar 

  • Whittam, R. 1968. Control of membrane permeability to potassium in red blood cells.Nature (London) 219:610

    Google Scholar 

  • Wilbrandt, W. 1937. A relationship between the permeability of the red cell and its metabolism.Trans. Faraday Soc. 33:956

    Google Scholar 

  • Wilbrandt, W. 1940. Die Abhängigkeit der Ionenpermeabilität der Erythrocyten vom glykolytischen Stoffwechsel.Pfluegers Arch. 243:519

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of Walther Wilbrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinz, A., Passow, H. Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. J. Membrain Biol. 57, 119–131 (1980). https://doi.org/10.1007/BF01868998

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868998

Keywords

Navigation