Skip to main content
Log in

Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3–6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria7–9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10–13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martens, C. S. & Berner, R. A. Science 185, 1167–1169 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Claypool, G. E. & Kaplan, I. R. in Natural Gases in Marine Sediments (ed. Kaplan, I. R.) 99–140 (Plenum, New York, 1974).

    Book  Google Scholar 

  3. Hungate, R. E. Arch. Microbiol. 59, 158–165 (1967).

    CAS  Google Scholar 

  4. Jeris, J. S. & McCarty, P. L. J. Wat. Pollut. Cont. Fedn 37, 178–192 (1965).

    CAS  Google Scholar 

  5. Smith, P. H. & Mah, R. A. Appl. Microbiol. 14, 368–371 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cappenberg, T. E. & Prins, R. A. Ant. van Leeuwenhoek, J. Microbiol. Serol. 40, 457–469 (1974).

    Article  CAS  Google Scholar 

  7. Oremland, R. S. & Taylor, B. F. Geochim. cosmochim. Acta 42, 209–214 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Abram, J. W. & Nedwell, D. B. Arch. Microbiol. 117, 89–92 (1978).

    Article  CAS  Google Scholar 

  9. Sørensen, J. et al. Appl. envir. Microbiol. 42, 5–11 (1981).

    Google Scholar 

  10. Weimer, P. J. & Zeikus, J. G. Arch. Microbiol. 119, 49–57 (1978).

    Article  CAS  Google Scholar 

  11. Patterson, J. A. & Hespell, R. B. Curr. Microbiol. 3, 79–83 (1979).

    Article  CAS  Google Scholar 

  12. Mah, R. A. Curr. Microbiol. 3, 321–326 (1980).

    Article  Google Scholar 

  13. Hippe, H. et al. Proc. natn. Acad. Sci. U.S.A. 76, 494–498 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Neill, A. R. et al. Biochem. J. 170, 529–535 (1978).

    Article  CAS  Google Scholar 

  15. Donnelly, M. I. & Dagley, S. J. J. Bact. 142, 916–924 (1980).

    CAS  PubMed  Google Scholar 

  16. Schink, B. & Zeikus, J. G. Curr. Microbiol. 4, 387–389 (1980).

    Article  CAS  Google Scholar 

  17. Strøm, A. R. et al. J. gen. Microbiol. 112, 315–320 (1979).

    Article  Google Scholar 

  18. Oremland, R. S. Appl. envir. Microbiol. 42, 122–129 (1981).

    CAS  Google Scholar 

  19. Gunsalus, R. P. et al. Biochemistry 17, 2374–2377 (1978).

    Article  CAS  Google Scholar 

  20. Balch, W. E. & Wolfe, R. S. J. Bact. 137, 256–263 (1979).

    CAS  PubMed  Google Scholar 

  21. Sansome, F. J. & Martens, C. S. Science 211, 707–709 (1981).

    Article  ADS  Google Scholar 

  22. Games, L. M. et al. Geochim. cosmochim. Acta 42, 1295–1297 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Rosenfeld, W. D. & Silverman, S. R. Science 130, 1658–1659 (19??).

  24. Oremland, R. S. & Silverman, M. P. Geomicrobiol. J. 1, 355–372 (1979).

    Article  CAS  Google Scholar 

  25. Wolin, E. A. et al. J. biol. Chem. 121, 184–191 (1963).

    Google Scholar 

  26. Oremland, R. S. et al. Appl. envir. Microbiol. 43, 462–468 (1982).

    CAS  Google Scholar 

  27. Culbertson, C. W. et al. Appl. envir. Microbiol. 41, 396–403 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oremland, R., Marsh, L. & Polcin, S. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296, 143–145 (1982). https://doi.org/10.1038/296143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296143a0

  • Springer Nature Limited

This article is cited by

Navigation