Skip to main content

The Origin and Distribution of Methane in Marine Sediments

  • Chapter
Natural Gases in Marine Sediments

Part of the book series: Marine Science ((MR,volume 3))

Abstract

Methane has been detected in several cores of rapidly deposited (> 50 m/my) deep sea sediments. Other gases, such as carbon dioxide and ethane, are commonly present but only in minor and trace amounts, respectively. The methane originates predominantly from bacterial reduction of CO2, as indicated by complimentary changes with depth in the amount and isotopic composition of redox-linked pore water constituents: sulfate-bicarbonate and bicarbonate-methane.

Presently, no precise determination exists of the amount of gas present under in situ conditions in deep sea sediments. Using C13/C12 isotope ratios of the dissolved bicarbonate and methane, and employing kinetic calculations based on Rayleigh distillation equations, the amounts of methane generated by reduction of carbon di-oxide by hydrogen has been estimated. The amounts calculated suggest that a minimum of 20 mmol CH4/kg interstitial water is formed.

A methane concentration of 20 mmol/kg approaches the amount required for the formation of gas hydrates under pressure-temperature conditions corresponding to a water column of about 500 meters, with a temperature of 5°C at the sediment-water interface. Depth of stability of the gas hydrate within the sediment is directly proportional to: hydrostatic pressure, or height of the water column above the sediment, temperature at the sediment surface, the geothermal gradient, and concentration of methane. Under average oceanic conditions, gas hydrates could be stable in sediment under a 3 km water column to depths of approximately 600 meters, if sufficient methane is present.

Gas hydrates have been proposed as the cause of anomalously high acoustic velocities in the upper 500–600 meters of sediment in the Blake-Bahama outer ridge. It is here suggested that acoustic reflectors in gas-rich sediment is associated with temperature-dependent lithologic transitions, which are in part formed by diagenetic processes involving microbiological methane generation.

Under certain conditions, carbonate ion must be removed from solution during methane production to maintain pH equilibrium between the pore water and the sediment. Authigenic carbonates, typically iron-rich nodules and cements, have been observed in the zone of active methane production. This link between methane production and carbonate precipitation may be an important mechanism for lithification of deep sea sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bottinga, Y., Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite- methane-hydrogen-water vapor, Geochim. et Cosmochim. Acta, 33, 49, 1969.

    Article  Google Scholar 

  • Broecker, W. S., and V. M. Oversby, Chemical Equilibrium in the Earth, 318 pp., McGraw-Hill, 1971.

    Google Scholar 

  • Bryan, G. M., In situ indications of gas hydrate, in Natural Gases in Marine Sediments edited by I. R. Kaplan, pp. 299–308, Plenum Press, New York, 1974.

    Google Scholar 

  • Bryant, M. P., Rumer methanogenic bacteria, in Physiology of Digestion in the Ruminant edited by R. W. Dougherty et al., pp. 411–418, Butterworths, Washington, 1965.

    Google Scholar 

  • Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Mikrobiol., 59, 20, 1967.

    Article  Google Scholar 

  • Claypool, G. E., B. J. Presley, and I. R. Kaplan, in Initial Reports of the Deep Sea Drilling Project, vol. 19, pp. 879 - 884, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Columbo, U., F. Gazzarrini, R. Gonfiantini, G. Sironi, and E. Tongiorgi, Measurements of C13/C12 isotope ratios on Italian natural gases and their interpretation, in Advances in Organic Geochemistry 1964, edited by G. D. Hobson and M. C. Louis, pp. 279–292, Pergamon Press, New York, 1966.

    Google Scholar 

  • Craig, H., The geochemistry of stable carbon isotopes, Geochim. et Cosmochim. Acta, 3, 53, 1953.

    Article  Google Scholar 

  • Culberson, O. L., and J. J. McKetta, Solubility of methane in water at pressures to 10,000 psi, J. Petrol. Technol., 3, (Trans. AIME), 223, 1951.

    Google Scholar 

  • Daniels, F., and R. A. Alberty, Physical Chemistry, 767 pp., John Wiley & Sons, Inc., New York, 1967.

    Google Scholar 

  • Emery, K. O., and D. Hoggan, Gases in marine sediments, Amer. Ass. Petrol. Geol. Bull., 42, 2174, 1958.

    Google Scholar 

  • Ewing, J. I., and C. D. Hollister, in Initial Reports of the Deep Sea Drilling Project, vol. 11, pp. 951–976, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Goldhaber, M. B., Equilibrium and dynamic aspects of the marine geo-chemistry of sulfur, Ph.D. thesis, Univ. of California, Los Angeles, 1974.

    Google Scholar 

  • Hammond, D. E., R. M. Horowitz, and W. S. Broecker, in Initial Reports of the Deep Sea Drilling Project, vol. 20, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Hand, J. H., D. L. Katz, and V. K. Verma, Review of gas hydrates with implications for ocean sediments, in Natural Gases in Marine Sediments, edited by I. R. Kaplan, pp. 179–194, Plenum Press, New York, 1974.

    Google Scholar 

  • Hardin, G., Biology Its Principles and Implications, 77 pp., W. H. Freeman and Co., 1966.

    Google Scholar 

  • Hitchon, B., Occurrence of natural gas hydrates in sedimentary basins, in Natural Gases in Marine Sediments edited by I. R. Kaplan, pp. 195–225, Plenum Press, New York, 1974.

    Google Scholar 

  • Hoering, T. C., and P. H. Abelson, Hydrocarbons from kerogen, Annual Rept., Director Geophys. Lab., Carnegie Inst. Wash. Jr. Bk., 62, 229, 1963.

    Google Scholar 

  • Hoering, T. C., Organic acids from the oxidation of recent sediment, Carnegie Inst. Wash. Jr. Bk., 66, 515, 1968.

    Google Scholar 

  • Hollister, D. C., J. I. Ewing et al., in Initial Reports of the Deep Sea Drilling Project, vol. 11, pp. 135–218, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Iannotti, E. L., D. Kafkewitz, M. J. Wolin, and M. P. Bryant, Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2, J. Bacteriol., 114, 1231, 1973.

    Google Scholar 

  • Johns, W. D., and A. Shimoyama, Clay minerals and petroleum-forming reactions during burial and diagenesis, Amer. Ass. Petrol. Geol. Bull., 56, 2160, 1972.

    Google Scholar 

  • Kobayashi, R., and D. L. Katz, Methane hydrate at high pressure, Petrol. Technol., 1, (Trans. AIME), 66, 1949.

    Google Scholar 

  • Koyama, T., Gaseous metabolism in lake sediments and paddy soils, in Advances in Organic Geochemistry, 1962, edited by U. Columbo and G. D. Hobson, pp. 363–375, The Macmillan Co., New York, 1964.

    Google Scholar 

  • Lancelot, Y., Carbonate diagenesis in the gas-rich Tertiary sediments from the Atlantic North American Basin (Abst.), in 8th Int. Sedimentol. Cong., Heidelberg, 1971.

    Google Scholar 

  • Lancelot, Y., and J. I. Ewing, in Initial Reports of the Deep Sea Drilling Project, vol. 11, pp. 791–800, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Makogon, Yu. F., V. I. Tsarev, and N. V. Cherskiy, Formation of large natural gas fields in zones of permanently low temperatures, Dokl. Akad. Nauk SSSR (Earth Sci.), English Transl., 205, 215, 1972.

    Google Scholar 

  • Manheim, F. T., K. M. Chan, and F. L. Sayles, in Initial Reports of the Deep Sea Drilling Project, vol. 5, pp. 501–512, U. S. Government Printing Office, Washington, 1970.

    Google Scholar 

  • Manheim, F. T., F. L. Sayles, and L. S. Waterman, in Initial Reports of the Deep Sea Drilling Project, vol. 10, pp. 615–623, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Méchalas, B. J., Pathways and environmental requirements for biogenic gas production in the ocean, in Natural Gases in Marine Sediments, edited by I. R. Kaplan, pp. 11–25, Plenum Press, New York, 1974.

    Google Scholar 

  • Miller, S. L., The nature and occurrence of clathrate hydrates, in Natural Gases in Marine Sediments, edited by I. R. Kaplan, pp. 151–177, Plenum Press, New York, 1974.

    Google Scholar 

  • Nakai, N., Geochemical studies on the formation of natural gases, Ph.D. thesis, Nagoya Univ., Japan, 1961.

    Google Scholar 

  • Nissenbaum, A., B. J. Presley, and I. R. Kaplan, Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia - I. Chemical and isotopic changes in major components of interstitial water, Geochim. et Cosmochim. Acta, 36, 1007, 1972.

    Article  Google Scholar 

  • Oana, S., and E. S. Deevey, Carbon-13 in lake waters, and its possible bearing on paleolimnology, Amer. J. Sci., 258-A, 253, 1960.

    Google Scholar 

  • Postgate, J. R., Recent advances in the study of the sulfate-reducing bacteria, Bacteriol. Rev., 29, 425, 1965.

    Google Scholar 

  • Presley, B. J., J. Culp, C. Petrowski, and I. R. Kaplan, in Initial Reports of the Deep Sea Drilling Project, vol. 11, pp. 805–810, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Presley, B. J., and I. R. Kaplan, Changes in dissolved sulfate, calcium and carbonate from interstitial water of near shore sediments, Geochim. et Cosmochim. Acta, 32, 1037, 1968.

    Article  Google Scholar 

  • Presley, B. J., and I. R. Kaplan, Initial Reports of the Deep Sea Drilling Project, vol 4, pp. 415–430, U. S. Government Printing Office, Washington, 1970.

    Google Scholar 

  • Presley, B. J., and I. R. Kaplan, in Initial Reports of the Deep Sea Drilling Project, vol. 11, pp. 1009–1012, U. S. Government Printing Office, Washington, 1972.

    Google Scholar 

  • Reeburgh, W. S., Observations of gases in Chesapeake Bay sediments, Limnol. Oceanogr, 143 368, 1969.

    Article  Google Scholar 

  • Rosenfeld, W. D., and S. R. Silverman, Carbon isotope fractionation in bacterial production of methane, Science, 130 1658, 1959.

    Article  Google Scholar 

  • Sackett, W. M., S. Nakaparksin, and D. Dalrymple, Carbon isotope effects in methane production by thermal cracking, in Advances in Organic Geochemistrys 1966, edited by G. D. Hobson and G. G. Speers, pp. 37–53, Pergamon Press, New York, 1968.

    Google Scholar 

  • Sayles, F. L., and F. T. Manheim, in Initial Reports of the Deep Sea Drilling Project, vol. 7, pp. 871–882, U. S. Government Printing Office, Washington, 1971.

    Google Scholar 

  • Sayles, F. L., F. T. Manheim, and K. M. Chen, in Initial Reports of the Deep Sea Drilling Project, vol. 4, pp. 401–414, U. S. Government Printing Office, Washington, 1970.

    Google Scholar 

  • Sayles, F. L., F. T. Manheim, and L. W. Waterman, in Initial Reports of the Deep Sea Drilling Project, vol. 11, pp. 997–1008, U. S. Government Printing Office, Washington, 1972.

    Google Scholar 

  • Sayles, F. L., F. T. Manheim, and L. S. Waterman, in Initial Reports of the Deep Sea Drilling Project, vol. 12, pp. 801–808, U. S. Government Printing Office, Washington, 1973a.

    Google Scholar 

  • Sayles, F. L., L. S. Waterman, and F. T. Manheim, in Initial Reports of the Deep Sea Drilling Project, vol. 19, pp. 871–874, U. S. Government Printing Office, Washington, 1973b.

    Google Scholar 

  • Sholkovitz, E., Interstitial water chemistry of the Santa Barbara Basin sediments, Geochim. et Cosmochim. Acta, 373 2043, 1973.

    Article  Google Scholar 

  • Smith, P. H., and R. A. Mah, Kinetics of acetate metabolism during sludge digension, Appl. Microbiol., 14, 368, 1966.

    Google Scholar 

  • Stanier, R. Y., M. Doudoroff, and E. A. Adelberg, The Microbial Worlds 873 pp., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1970.

    Google Scholar 

  • Steggerda, F. R., and J. F. Dimmick, Effects of bean diets on concentration of carbon dioxide in flatus, Amer. J. Clin. Nutr., 19, 120, 1966.

    Google Scholar 

  • Stoll, R. E., Effects of gas hydrates in sediments, in Natural Gases in Marine Sediments3 edited by I. R. Kaplan, pp. 235–248, Plenum Press, New York, 1974.

    Google Scholar 

  • Stoll, R. D., J. Ewing and G. M. Bryan, Anomalous wave velocities in sediments containing gas hydrates, J. Geophys. Res., 763 2090, 1971.

    Article  Google Scholar 

  • Toerien, D. F., and W. H. J. Hattingh, The microbiology of anaerobic digestion, Water Res., 3 385, 1969.

    Article  Google Scholar 

  • Tuttle, J. H. and H. W. Jannasch, Dissimilatory reduction of inor-ganic sulfur by facultatively anaerobic marine bacteria. J. Bact., 115, 732, 1973.

    Google Scholar 

  • Vaccaro, R. F., Inorganic nitrogen in sea water, in Chemical Oceanography, edited by J. P. Riley and G. Skirrow, pp. 365–408, Academic Press, New York, 1965.

    Google Scholar 

  • Waterman, L. S., F. L. Sayles, and F. T. Manheim, in Initial Reports of the Deep Sea Drilling Project, vol. 18, pp. 1001–1012, U. S. Government Printing Office, Washington, 1973.

    Google Scholar 

  • Weiss, R. F., The solubility of nitrogen, oxygen and argon in water and sea water, Deep Sea Res., 17, 721, 1970.

    Google Scholar 

  • Whelan, T., Methane and carbon dioxide in coastal marsh sediments, in Natural Gases in Marine Sediments, edited by I. R. Kaplan, pp. 47–61, Plenum Press, New York, 1974.

    Google Scholar 

  • Wolfe, R. S., Microbial formation of methane, Adv. Microbial. Physiol. 6, 107, 1971.

    Article  Google Scholar 

  • Zeikus, J. G., and R. S. Wolfe, Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile, J. Bacteriol., 109, 707, 1972.

    Google Scholar 

  • Zobell, C. E., and S. C. Rittenberg, Sulfate-reducing bacteria in marine sediments, J. Marine Res., 7, 602. 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Claypool, G.E., Kaplan, I.R. (1974). The Origin and Distribution of Methane in Marine Sediments. In: Kaplan, I.R. (eds) Natural Gases in Marine Sediments. Marine Science, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2757-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2757-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2759-2

  • Online ISBN: 978-1-4684-2757-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics