Skip to main content
Log in

Formation of organic molecules on Titan

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The unique atmospheric environment on Titan has stimulated great interest in its organic chemistry. Recently1 we proposed that simple organic-nitrogen compounds such as HCN could be efficiently formed by cosmic ray bombardment of a nitrogen-containing atmosphere on Titan. Voyager I has now verified that molecular nitrogen is indeed the major constituent on Titan2–4 and that HCN is also present2. Based on these new data, we now propose that even more complex organic-nitrogen molecules such as ethyl cyanide (CH3CH2CN), vinyl cyanide (CH2CHCN), and cyanoacetylene (HCCCN) may be formed efficiently in the lower atmosphere of Titan, where lower temperatures and higher densities will ensure the efficacy of three-body ion–molecule association reactions. Interestingly, these compounds have been found in several dark interstellar clouds5,6, thus the chemistry suggested here is analogous to that proposed as an explanation of interstellar cyanopolyynes7. The only difference is the role played by three-body association reactions in the dense lower atmosphere of Titan. The mechanism proposed here rests upon a firmer experimental foundation than the analogous radiative association reactions in interstellar clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capone, L. A., Dubach, J., Whitten, R. C., Prasad, S. S. & Santhanam, K. Icarus 44, 72–84 (1980).

    Article  ADS  Google Scholar 

  2. Hanel, R. et al. Science 212, 192–200 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Tyler, G. L. et al. Science 212, 192–212 (1981).

    Article  ADS  Google Scholar 

  4. Broadfoot, A. L. et al. Science 212, 201–206 (1981).

    Article  ADS  Google Scholar 

  5. Kroto, H. W. et al. Astrophys. J. Lett. 219, L133–L137 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Broten, N. W. et al. Astrophys. J. Lett. 223, L105–L107 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Mitchell, G. F., Huntress, W. T. & Prasad, S. S. Astrophys. J. 233, 102–108 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Dubach, J., Whitten, R. C. & Sims, J. S. Planet. Space Sci. 22, 525–536 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Capone, L. A., Whitten, R. C., Dubach, J., Prasad, S. S. & Huntress, W. T. Icarus 28, 367–378 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Capone, L. A., Whitten, R. C., Dubach, J. & Prasad, S. S. Astrophys. J. 213, 977–983 (1977).

    Article  ADS  Google Scholar 

  11. Capone, L. A., Dubach, J., Whitten, R. C. & Prasad, S. S. Icarus 39, 433–449 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Huntress, W. T. Astrophys. J. Suppl. 33, 495–514 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Albritton, D. L. Atom. Data nucl. Data Tabl. 22, 1–101 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Huntress, W. T., McEwan, M. J., Karpas, Z. & Anicich, V. G. Astrophys. J. Suppl. 44, 481 (1980).

    Article  ADS  CAS  Google Scholar 

  15. McEwan, M. J. IAU Symp. 87, 299, (1980).

    ADS  CAS  Google Scholar 

  16. Smith, D. & Adams, N. G. Astrophys. J. Lett. 220, 87–92 (1978).

    Article  ADS  Google Scholar 

  17. Handbook of Physics and Chemistry, 43rd edn, p. 2453 (Chemical Rubber Co., Cleveland, 1961).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capone, L., Prasad, S., Huntress, W. et al. Formation of organic molecules on Titan. Nature 293, 45–46 (1981). https://doi.org/10.1038/293045a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293045a0

  • Springer Nature Limited

This article is cited by

Navigation