Skip to main content
Log in

On the formation of CN bonds in Titan’s atmosphere—a unified reaction valley approach study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we investigated the formation of protonated hydrogen cyanide HCNH+ and methylene amine cation CH\(_{2}\textit {NH}_{2}^{+}\) (both identified in Titan’s upper atmosphere) from three different pathways which stem from the interaction between CH4 and N+(3P). As a mechanistic tool, we used the Unified Reaction Valley Approach (URVA) complemented with the Local Mode Analysis (LMA) assessing the strength of the CN bonds formed in these reactions. Our URVA studies could provide a comprehensive overview on bond formation/cleavage processes relevant to the specific mechanism of eight reactions R1R8 that occur across the three pathways. In addition, we could explain the formation of CH\(_{2}\textit {NH}_{2}{\!}^{+}\) and the appearance of HCNH+ and CHNH\(_{2}{\!}^{+}\) along these paths. Although only smaller molecules are involved in these reactions including isomerization, hydrogen atom abstraction, and hydrogen molecule capture, we found a number of interesting features, such as roaming in reaction R3 or the primary interaction of H2 with the carbon atom in HCNH+ in reaction R8 followed by migration of one of the H2 hydrogen atoms to the nitrogen which is more cost effective than breaking the HH bond first; a feature often found in catalysis. In all cases, charge transfer between carbon and nitrogen could be identified as a driving force for the CN bond formation. As revealed by LMA, the CN bonds formed in reactions R1R8 cover a broad bond strength range from very weak to very strong, with the CN bond in protonated hydrogen cyanide HCNH+ identified as the strongest of all molecules investigated in this work. Our study demonstrates the large potential of both URVA and LMA to shed new light into these extraterrestrial reactions to help better understand prebiotic processes as well as develop guidelines for future investigations involving areas of complex interstellar chemistry. In particular, the formation of CN bonds as a precursor to the extraterrestrial formation of amino acids will be the focus of future investigations.

Formation of CN bonds in Titan’s atmosphere visualized via the reaction path curvature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oberg KI, Bergin EA (2020) Astrochemistry and compositions of planetary. Systems. Phys. Rep.

  2. Okada K, Sakimoto K, Takada Y, Schuessler HA (2020) A study of the translational temperature dependence of the reaction rate constant between CH3CN and Ne+ at low temperatures. J Chem Phys 153(12):124305

    Article  CAS  PubMed  Google Scholar 

  3. de Barros ALF, Bergantini A, Domaracka A, Rothard H, Boduch P, da Silveira EF (2020) Radiolysis of NH3:CO ice mixtures - implications for solar system and interstellar ices. MNRAS 499(2):2162–2172

    Article  Google Scholar 

  4. Dubois D, Carrasco N, Jovanovic L, Vettier L, Gautier T, Westlake J (2020) Positive ion chemistry in an N2-CH4 plasma discharge: key precursors to the growth of Titan Tholins. Icarus 338:113437

    Article  CAS  Google Scholar 

  5. Tielens A (2013) The molecular universe. RMP 85(3):1021

    Article  CAS  Google Scholar 

  6. Matson DL, Spilker LJ, Lebreton J-P (2003) The cassini/huygens mission to the saturnian system. The Cassini-Huygens Mission: 1–58

  7. NASA: Cassini/Huygens Mission. NASA. See the website for a comprehensive overview

  8. Werner MW, Roellig TL, Low FJ, Rieke GH, Rieke M, Hoffmann WF, Young E, Houck JR, Brandl B, Fazio GG, Hora JL, Gehrz RD, Helou G, Soifer BT, Stauffer J, Keene J, Eisenhardt P, Gallagher D, Gautier TN, Irace W, Lawrence CR, Simmons L, Van Cleve JE, Jura M, Wright EL, Cruikshank DP (2004) The spitzer space telescope mission. APIS 154(1):1–9

    Google Scholar 

  9. France K, Schindhelm E, Herczeg GJ, Brown A, Abgrall H, Alexander RD, Bergin EA, Brown JM, Linsky JL, Roueff E, et al. (2012) A hubble space telescope survey of H2 emission in the Circumstellar environments of young stars. ApJ 756(2):171

    Article  Google Scholar 

  10. Gardner JP, Mather JC, Clampin M, Doyon R, Greenhouse MA, Hammel HB, Hutchings JB, Jakobsen P, Lilly SJ, Long KS, et al. (2006) The James Webb space telescope. Space Sci Rev 123(4):485–606

    Article  Google Scholar 

  11. Fanson J, Bernstein R, Angeli G, Ashby D, Bigelow B, Brossus G, Bouchez A, Burgett W, Contos A, Demers R, et al. (2020) Overview and status of the giant magellan telescope project. International Society for Optics and Photonics, vol 11445, p 114451

  12. Heazlewood BR, Softley TP (2021) Towards chemistry at absolute zero. Nat Rev Chem: 1–16

  13. Cooke IR, Sims IR (2019) Experimental studies of gas-phase reactivity in relation to complex organic molecules in star-forming regions. ACS Earth Space Chem: 1109–1134

  14. Smith IWM (2011) Laboratory astrochemistry: gas-phase processes. ARAA 49(1):29–66

    Article  CAS  Google Scholar 

  15. Bourgalais J, Carrasco N, Vettier L, Gautier T, Blanchet V, Petit S, Descamps D, Fedorov N, Delos R, Gaudin J (2020) On an eUV atmospheric simulation chamber to study the photochemical processes of Titan’s atmosphere. Sci 10(1):1–14

    Google Scholar 

  16. Bourgalais J, Carrasco N, Vettier L, Comby A, Descamps D, Petit S, Blanchet V, Gaudin J (2021) marty Bernard, aromatic formation promoted by ion-driven radical pathways in EUV photochemical experiments simulating Titan’s atmospheric chemistry. J Phys Chem A 125:3159–3168

    Article  CAS  PubMed  Google Scholar 

  17. Sandford SA, Nuevo M, Bera PP, Lee TJ (2020) Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks. Chem Rev 120(11):4616–4659

    Article  CAS  PubMed  Google Scholar 

  18. Haupa KA, Ong W-S, Lee Y-P (2020) Hydrogen abstraction in astrochemistry: formation of CH2CONH2 in the reaction of H atom with acetamide (CH3CONH2) and photolysis of CH2CONH2 to form Ketene (CH2CO) in solid para-hydrogen. Phys Chem Chem Phys 22(11):6192–6201

    Article  CAS  PubMed  Google Scholar 

  19. Noelle A, Vandaele AC, Martin-Torres J, Yuan C, Rajasekhar BN, Fahr A, Hartmann GK, Lary D, Lee Y-P, Limão-Vieira P., et al. (2020) UV/Vis+ photochemistry database: structure, content and applications. J Quant Spectrosc Radiat Transf 253: 107056

    Article  CAS  Google Scholar 

  20. Lavvas P, Lellouch E, Strobel D, Gurwell M, Cheng A, Young L, Gladstone G (2021) A major ice component in Pluto’s haze. Nat Astron 5(3):289–297

    Article  Google Scholar 

  21. DIschia M, Manini P, Moracci M, Saladino R, Ball V, Thissen H, Evans RA, Puzzarini C, Barone V (2019) Astrochemistry and astrobiology: materials science in wonderland? Int J Mol Sci 20(17):4079

    Article  CAS  Google Scholar 

  22. Thripati S, Ramabhadran RO (2021) Pathways for the formation of formamide, a prebiotic biomonomer: metal—ons in interstellar gas-phase chemistry. J Phys Chem A: 3457–3472

  23. Vastel C, Loison JC, Wakelam V, Lefloch B (2019) Isocyanogen formation in the cold interstellar medium. Astron Astrophys: 91

  24. Gavilan L, Broch L, Carrasco N, Fleury B, Vettier L (2017) Organic aerosols in the presence of CO22 in the Early Earth and Exoplanets: UV–Vis refractive indices of oxidized tholins. Astrophys J Letters: 5

  25. Waite J, Young D, Cravens T, Coates A, Crary F, Magee B, Westlake J (2007) The process of Tholin formation in Titan’s upper atmosphere. Science 316(5826):870–875

    Article  CAS  PubMed  Google Scholar 

  26. Cable ML, Hörst S. M., Hodyss R, Beauchamp PM, Smith MA, Willis PA (2012) Titan Tholins: simulating titan organic chemistry in the Cassini-Huygens era. Chem Rev 112(3):1882–1909

    Article  CAS  PubMed  Google Scholar 

  27. Neish CD, Somogyi A, Smith MA (2010) Titan’s primordial soup: formation of amino acids via low-temperature hydrolysis of Tholins. Astrobiology 10(3):337–347

    Article  CAS  PubMed  Google Scholar 

  28. Dalton J, Cruikshank D, Stephan K, McCord T, Coustenis A, Carlson R, Coradini A (2010) Chemical composition of icy satellite surfaces. Space Sci Rev 153(1-4):113–154

    Article  CAS  Google Scholar 

  29. Cravens TE, Robertson IP, Waite Jr. J. H., Yelle RV, Kasprzak WT, Keller CN, Ledvina SA, Niemann HB, Luhmann JG, McNutt RL, Ip W-H, De La Haye V, Mueller-Wodarg I, Wahlund J-E, Anicich VG, Vuitton V (2006) Composition of Titan’s ionosphere. Geophys Res Lett 33 (7):01003

    Article  Google Scholar 

  30. Waite J, Lewis W, Kasprzak W, Anicich V, Block B, Cravens TE, Fletcher G, Ip W-H, Luhmann J, McNutt R, et al. (2004) The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation. Space Sci Rev 114(1-4):113–231

    Article  CAS  Google Scholar 

  31. Ennis C, Cable ML, Hodyss R, Maynard-Casely HE, Hydrocarbon Mixed (2020) Cyanide ice compositions for Titan’s atmospheric aerosols a ternary-phase co-crystal predicted by density functional theory. ACS Earth and Space Chem 4(7):1195–1200

    Article  CAS  Google Scholar 

  32. Kronrod V, Dunaeva A, Gudkova T, Kuskov O (2020) Matching of models of the internal structure and thermal regime of partially differentiated Titan with gravity field. Sol Syst Res 54(5):405–419

    Article  CAS  Google Scholar 

  33. Markus CR, Thorwirth S, Asvany O, Schlemmer S (2019) High-resolution double resonance action spectroscopy in ion traps: vibrational and rotational fingerprints of CH2NH\(_{2}^{+}\). Phys Chem Chem Phys 21(48):26406–26412

    Article  CAS  PubMed  Google Scholar 

  34. Yuen CH, Ayouz MA, Balucani N, Ceccarelli C, Schneider F, Kokoouline V (2019) Dissociative recombination of CH2NH2+: a crucial link with interstellar methanimine and Titan ammonia. MNRAS: 659–664

  35. Markus CR, Thorwirth S, Asvany O, Schlemmer S (2019) High-resolution double resonance action spectroscopy in ion traps: vibrational and rotational fingerprints of CH2NH\(_{2}^{+}\). Phys Chem Chem Phys: 26406–26412

  36. Richardson V, Alcaraz C, Geppert WD, Polasek M, Romanzin C, Sundelin D, Thissen R, Tosia P, Zabkae J, Ascenzia D (2021) The reactivity of methanimine radical cation (H2CNH+) and its isomer aminomethylene (HCNH\(_{2}^{+}\)) with Methane. Chem Phys Lett: 138611

  37. Pei L, Farrar JM (2012) Ion imaging study of reaction dynamics in the N+ + CH4. System Int J Chem Phys 137(15):154312

    Article  Google Scholar 

  38. Kraka E, Zou W, Tao Y, Freindorf M (2020) Exploring the mechanism of catalysis with the Unified Reaction Valley Approach (URVA) - a review. Catalysts 10:691

    Article  CAS  Google Scholar 

  39. Kraka E, Zou W, Tao Y (2020) Decoding chemical information from vibrational spectroscopy data: local vibrational mode theory. WIREs: Comput Mol Sci 10:1480

    Google Scholar 

  40. Zou W, Sexton T, Kraka E, Freindorf M, Cremer D (2016) A new method for describing the mechanism of a chemical reaction based on the unified reaction valley approach. J Chem Theory Comput 12:650–663

    Article  CAS  PubMed  Google Scholar 

  41. Kraka E (2011) Reaction path hamiltonian and the unified reaction valley approach. WIREs Comput Mol Sci 1:531–556

    Article  CAS  Google Scholar 

  42. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

    Google Scholar 

  43. Califano S (1976) Vibrational states. Wiley, London

    Google Scholar 

  44. Herzberg G (1945) Molecular spectra and molecular structure, II. Infrared and Raman Spectra of Polyatomic Molecules. Van Nostrand, New York

    Google Scholar 

  45. Konkoli Z, Cremer D (1998) A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes. Int J Quant Chem 67:1–9

    Article  CAS  Google Scholar 

  46. Konkoli Z, Larsson JA, Cremer D (1998) A new way of analyzing vibrational spectra. II. Comparison of internal mode frequencies. Int J Quant Chem 67:11–27

    Article  CAS  Google Scholar 

  47. Konkoli Z, Cremer D (1998) A new way of analyzing vibrational spectra. III. Characterization of normal vibrational modes in terms of internal vibrational modes. Int J Quant Chem 67: 29–40

    Article  CAS  Google Scholar 

  48. Konkoli Z, Larsson JA, Cremer D (1998) A new way of analyzing vibrational spectra. IV. Application and testing of adiabatic modes within the concept of the characterization of normal modes. Int J Quant Chem 67:41–55

    Article  CAS  Google Scholar 

  49. Cremer D, Larsson JA, Kraka E (1998) New developments in the analysis of vibrational spectra on the use of adiabatic internal vibrational modes. In: Parkanyi C (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, pp 259–327

  50. Zou W, Cremer D (2016) C2 in a box: determining its Intrinsic Bond Strength for the X\(^{1} {\Sigma }^{+}_{g}\) Ground State. Chem Eur J 22:4087–4097

    Article  CAS  PubMed  Google Scholar 

  51. Freindorf M, Kraka E (2020) Critical assessment of the FeC and CO bond strength in Carboxymyoglobin - A QM/MM local vibrational mode study. J Mol Model 26:281–128115

    Article  CAS  PubMed  Google Scholar 

  52. Yannacone S, Freindorf M, Tao Y, Zou W, Kraka E (2020) Local vibrational mode analysis of π-hole interactions between aryl donors and small molecule acceptors. Crystals 10:556–155625

    Article  CAS  Google Scholar 

  53. Tao Y, Zhang L, Zou W, Kraka E (2020) Equilibrium geometries, adiabatic excitation energies and intrinsic C=C/C-H bond strengths of ethylene in lowest singlet excited states described by TDDFT. Symmetry 12:1545–1154513

    Article  CAS  Google Scholar 

  54. Pekar KB, Lefton JB, McConville C, Burleson J, Sethio D, Kraka E, Runčevski T. (2020) Peritectic phase transition of benzene and acetonitrile into a cocrystal relevant to Titan, Saturn’s moon. Chem Comm https://doi.org/10.1039/d0cc04999a

  55. Tao Y, Zou W, Sethio D, Verma N, Qiu Y, Tian C, Cremer D, Kraka E (2019) In situ measure of intrinsic bond strength in crystalline structures: Local vibrational mode theory for periodic systems. J Chem Theory Comput 15:1761–1776

    Article  CAS  PubMed  Google Scholar 

  56. Delgado AAA, Humason A, Kalescky R, Freindorf M, Kraka E (2021) Exceptionally long covalent CC bonds - a local vibrational mode study. Molecules 26:950–195025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beiranvand N, Freindorf M, Kraka E (2021) Hydrogen bonding in natural and unnatural base pairs - explored with vibrational spectroscopy. Molecules 26:2268–1226822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 Energy evaluation by direct methods. Chem Phys Lett 153(6):503–506

    Article  CAS  Google Scholar 

  59. Cremer D (2011) Møller-Plesset perturbation theory: from small molecule methods to methods for thousand of atoms. WIREs: Comput Mol Sci 1:509–530

    CAS  Google Scholar 

  60. Celani P, Werner H-J (2000) Multireference perturbation theory for large restricted and selected active space reference wave functions. J Chem Phys 112(13):5546–5557

    Article  CAS  Google Scholar 

  61. Celani P, Werner H-J (2003) Analytical energy gradients for internally contracted second–order multireference perturbation theory. J Chem Phys 119(10):5044–5057

    Article  CAS  Google Scholar 

  62. Győrffy W., Shiozaki T, Knizia G, Werner H-J (2013) Analytical energy gradients for second–order multireference perturbation theory using density fitting. J Chem Phys 138(10):104104

    Article  PubMed  Google Scholar 

  63. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  64. Bartlett RJ, Musiał M. (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79(1):291–352

    Article  CAS  Google Scholar 

  65. Christiansen O (2006) Coupled cluster theory with emphasis on selected new developments. Theor Chem Acc 116:106–123

    Article  CAS  Google Scholar 

  66. Matthews DA, Cheng L, Harding ME, Lipparini F, Stopkowicz S, Jagau T-C, Szalay PG, Gauss J, Stanton J (2020) Coupled-cluster techniques for computational chemistry: the CFOUR program package. J Chem Phys 152(21):214108–121410836

    Article  CAS  PubMed  Google Scholar 

  67. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys, Lett 157:479–483

    Article  CAS  Google Scholar 

  68. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods. Chem Phys, Lett 165:513–522

    Article  CAS  Google Scholar 

  69. Stanton J (1997) Why CCSD(T) works: a different perspective. Chem Phys, Lett 281:130–134

    Article  CAS  Google Scholar 

  70. Fukui K (1981) The path of chemical reactions - the IRC approach. Acc Chem Res 14(12):363–368

    Article  CAS  Google Scholar 

  71. Hratchian HP, Kraka E (2013) Improved Predictor-Corrector Integrators For Evaluating Reaction Path Curvature. J Chem Theory Comput 9:1481–1488

    Article  CAS  PubMed  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16. Gaussian Inc Wallingford CT

  73. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M., Celani P, Györffy W., Kats D, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bennie SJ, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Lee SJR, Liu Y, Lloyd AW, Ma Q, Mata RA, May AJ, McNicholas SJ, Meyer W, Miller III TF, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Peng D, Pflüger K., Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Welborn M MOLPRO, version 2021.1, A Package of ab initio Programs, University of Stuttgart, Pfaffenwaldring 55 D-70569 Stuttgart, Germany. https://www.molpro.net

  74. Werner H-J, Knowles PJ, Manby FR, Black JA, Doll K, Heßelmann A., Kats D, Köhn A., Korona T, Kreplin DA, Ma Q, Miller TF, Mitrushchenkov A, Peterson KA, Polyak I, Rauhut G, Sibaev M (2020) The Molpro quantum chemistry package. J Chem Phys 152(14):144107

    Article  CAS  PubMed  Google Scholar 

  75. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M (2012) Molpro: a general–purpose quantum chemistry program package. Mol Sci 2(2):242–253

    Article  CAS  Google Scholar 

  76. Tao Y, Zou W, Freindorf M, Cremer D, Kraka E (2020) pURVA. Southern Methodist University: Dallas, TX USA

  77. Zou W, Tao Y, Freindorf M, Makoś MZ, Verma N, Kraka E (2020) Local Vibrational mode analysis: LModeA. Computational and theoretical chemistry group (CATCO), Southern Methodist University: Dallas, TX USA

  78. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  79. Weinhold F, Landis CR (2003) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  80. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F. (2013) NBO6

  81. Park JW, Al-Saadon R, MacLeod MK, Shiozaki T, Vlaisavljevich B (2020) Multireference electron correlation methods: journeys along potential energy surfaces. Chem Rev 120:5878–5909

    Article  CAS  PubMed  Google Scholar 

  82. Cremer D, Kraka E (2010) From molecular vibrations to bonding, chemical reactions, and reaction mechanism. Curr Org Chem 14:1524–1560

    Article  CAS  Google Scholar 

  83. Kalescky R, Kraka E, Cremer D (2014) Are carbon-halogen double and triple bonds possible? Int J Quant Chem 114:1060–1072

    Article  CAS  Google Scholar 

  84. Kalescky R, Zou W, Kraka E, Cremer D (2014) Quantitative assessment of the multiplicity of carbon-halogen bonds: carbenium and halonium ions with F, Cl, Br, and I. J Phys Chem A 118:1948–1963

    Article  CAS  PubMed  Google Scholar 

  85. Oliveira V, Kraka E, Cremer D (2016) Quantitative assessment of halogen bonding utilizing vibrational spectroscopy. Inorg Chem 56:488–502

    Article  PubMed  Google Scholar 

  86. Setiawan D, Sethio D, Cremer D, Kraka E (2018) From strong to weak NF bonds: on the design of a new class of fluorinating agents. Phys Chem Chem Phys 20:23913–23927

    Article  CAS  PubMed  Google Scholar 

  87. Sethio D, Oliveira V, Kraka E (2018) Quantitative assessment of tetrel bonding utilizing vibrational spectroscopy. Molecules 23:2763

    Article  PubMed Central  Google Scholar 

  88. Sexton TM, Freindorf M, Kraka E, Cremer D (2016) A reaction valley investigation of the cycloaddition of 1,3-Dipoles with the dipolarophiles ethene and acetylene: solution of a mechanistic puzzle. J Phys Chem A 120:8400–8418

    Article  CAS  PubMed  Google Scholar 

  89. Reis MC, López C.S., Kraka E, Cremer D, Faza ON (2016) Rational design in catalysis: a mechanistic study of β-hydride eliminations in Gold(I) and Gold(III) complexes based on features of the reaction valley. Inorg Chem 55:8636–8645

    Article  Google Scholar 

  90. Sexton T, Kraka E, Cremer D (2016) Extraordinary mechanism of the diels-alder reaction: investigation of stereochemistry, charge transfer, charge polarization, and biradicaloid formation. J Phys Chem A 120:1097–1111

    Article  CAS  PubMed  Google Scholar 

  91. Makoś MZ, Freindorf M, Tao Y, Kraka E (2021) Theoretical insights into [NHC]Au(I) catalyzed hydroalkoxylation of allenes: a unified reaction valley approach study. J Org Chem 86:5714–5726

    Article  PubMed  Google Scholar 

  92. Freindorf M, Cremer D, Kraka E (2017) Gold(I)-assisted catalysis - a comprehensive view on the [3,3]-Sigmatropic rearrangement of allyl acetate. Mol Phys 116:611–630

    Article  Google Scholar 

  93. Bowman JM, Houston PL (2017) Theories and simulations of roaming. Chem Soc Rev 46:7615–7624

    Article  CAS  PubMed  Google Scholar 

  94. Quinn MS, Nauta K, Jordan MJT, Bowman JM, Houston PL, Kable SH (2020) Rotational resonances in the H2CO roaming reaction are revealed by detailed correlations. Science 369:1592–1596

    Article  CAS  PubMed  Google Scholar 

  95. Endo T, Neville SP, Wanie V, Beaulieu S, Qu C, Deschamps J, Lassonde P, Schmidt BE, Fujise H, Fushitani M, Hishikawa A, Houston PL, Bowman JM, Schuurman MS, Legare F, Ibrahim H (2020) Capturing roaming molecular fragments in real time. Science 370:1072–1077

    Article  CAS  PubMed  Google Scholar 

  96. Makoś M. Z., Freindorf M, Sethio D, Kraka E (2019) New insights into Fe–H2 and Fe–H Bonding of a [NiFe] Hydrogenase Mimic – a local vibrational mode study. Theor Chem Acc 138:76

    Article  Google Scholar 

  97. Bakhmutov VI (2008) Dihydrogen bonds - principles, experiments, and applications. Wiley Ingterscience, New York

    Book  Google Scholar 

  98. Karas LJ, Wu C-H, Das R, Wu JI-C (2020) Hydrogen bond design principles. WIREs Comput Mol Sci 10:1477–1147715

    Article  Google Scholar 

  99. Kraka E, Joo H, Cremer D (2010) A stunning example for a spontaneous reaction with a complex mechanism: the vinylidene-acetylene cycloaddition reaction. Mol Phys 108:2667–2685

    Article  CAS  Google Scholar 

  100. Joo H, Kraka E, Quapp W, Cremer D (2007) The mechanism of a barrierless reaction: hidden transition state and hidden intermediates in the reaction of methylene with ethene. Mol Phys 105:2697–2717

    Article  CAS  Google Scholar 

  101. Quapp W, Kraka E, Cremer D (2007) Finding the transition state of quasi-barrierless reactions by a growing string method for newton trajectories: application to the dissociation of methylenecyclopropene and cyclopropane. J Chem Phys A 111:11287–11293

    Article  CAS  Google Scholar 

  102. Kraka E, Larsson JA, Cremer D (2010) Generalization of the badger rule based on the use of adiabatic vibrational modes. In: Grunenberg J (ed) Computational spectroscopy. Wiley, New York, pp 105–149

  103. Kalescky R, Kraka E, Cremer D (2013) Identification of the strongest bonds in chemistry. J Phys Chem A 117:8981–8995

    Article  CAS  PubMed  Google Scholar 

  104. Zhao L, Pan S, Holzmann N, Schwerdtfeger P, Frenking G (2019) Chemical bonding and bonding models of main-group compounds. Chem Rev 119:8781–8845

    Article  CAS  PubMed  Google Scholar 

  105. Gavezzotti A (2016) Comparing the strength of covalent bonds, intermolecular hydrogen bonds and other intermolecular interactions for organic molecules: x-ray diffraction data and quantum chemical calculations. New J Chem 40:6848– 6853

    Article  CAS  Google Scholar 

  106. Kraka E, Cremer D (2009) Characterization of CF bonds with multiple-bond character: bond lengths, stretching force constants, and bond dissociation energies. ChemPhysChem 10:686–698

    Article  CAS  PubMed  Google Scholar 

  107. Kraka E, Cremer D (2012) Weaker Bonds with shorter bond lengths. Rev Proc Quim: 39–42

  108. Kraka E, Setiawan D, Cremer D (2015) Re-evaluation of the bond length-bond strength rule: the stronger bond is not always the shorter bond. J Comp Chem 37:130–142

    Article  Google Scholar 

  109. Kaupp M, Danovich D, Shaik S (2017) Chemistry is about energy and its changes: a critique of bond-length/bond-strength correlations. Coord Chem Rev 344:355–362

    Article  CAS  Google Scholar 

  110. Takeuchi Y, Furukawa Y, Kobayashi T, Sekine T, Terada N, Kakegawa T (2020) Impact-induced amino acid formation on Hadean Earth and Noachian Mars. Sci Rep 10:9220–192 207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Puzzarini C, Salta Z, Tasinato N, Lupi J, Cavallotti C, Barone V (2020) A twist on the reaction of the CN radical with methylamine in the interstellar medium: new hints from a state-of-the-art quantum-chemical study. MNRAS 496:4298– 4310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank SMU for generous computational resources.

Funding

This work was financially supported by the National Science Foundation, Grant 2102461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elfi Kraka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Author contribution

Conceptualization, E.K.; methodology, E.K. and M.F.; pURVA coding and testing, YT; validation, M.F. and N.B.; formal analysis, N.B. and M.F.; investigation, N.B, M.F. and A.D.; data curation, N.B. and M.F.; writing (original draft preparation), E.K.; writing (review and editing), E.K., AD, and M.F. visualization, N.B. and M.F.; supervision, E.K.; project administration, E.K.; funding acquisition, E.K. All the authors have read and agreed to the published version of the manuscript.

Availability of data and materials

All data generated or analyzed during this study are included in this published article. Additional information is provided in the Supporting Information which contains (i) the decomposition of the reaction path direction along the reaction parameter s for each reaction; (ii) reaction movies following the changes of the reaction complex along the reaction parameter s for each reaction; (iii) Cartesian coordinates of molecules 1, 37, transition states TS1TS6 and TS8, and some reference molecules.

Code availability

The local mode analysis package LModeA can be obtained by the authors upon request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marek Freindorf and Nassim Beiranvand contributed equally to this work.

This article belongs to the Topical Collection: VIII Symposium on Electronic Structure and Molecular Dynamics – VIII SeedMol

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freindorf, M., Beiranvand, N., Delgado, A.A.A. et al. On the formation of CN bonds in Titan’s atmosphere—a unified reaction valley approach study. J Mol Model 27, 320 (2021). https://doi.org/10.1007/s00894-021-04917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04917-8

Keywords

Navigation