Skip to main content
Log in

Measurements of diamond lattice displacement by platelet defects with electron microscopic moiré patterns

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Among the diverse lattice defects occurring in natural diamonds, none has engendered so much controversy as the ‘platelets’, those planar defects which lie on {100} planes of the diamond matrix and whose diameters commonly lie in the range 10–100 nm. For many years, the only evidence for the existence of platelets was indirect, residing in the reported anomalous ‘spike’ diffuse X-ray reflections1, but it was eventually accepted that these diffuse reflections could not be due to thermal vibrations but arose from static lattice disorder2. Guinier3 and Frank4 independently pointed out that the defects responsible for the ‘spike’ reflections must be plate-like, lying in {100}. Direct proof of the existence of platelets came with the transmission electron microscope (TEM) observations of Evans and Phaal5, and it has been shown that the platelet structure is extrinsic, that is, that it forces apart the diamond matrix on either side of the platelet6. We now report a new and more reliable way of measuring the magnitude of matrix displacement produced by platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raman, C. V. & Nilakantan, P. Proc. Ind. Acad. Sci. A11, 389–397 (1940).

    Article  Google Scholar 

  2. Lonsdale, K. Proc. R. Soc. A179, 315–320 (1942).

    ADS  CAS  Google Scholar 

  3. Guinier, A. C. r. Acad. Sci., Paris 215, 114–115 (1942).

    CAS  Google Scholar 

  4. Frank, F. C. Proc. R. Soc. A237, 168–174 (1956).

    ADS  CAS  Google Scholar 

  5. Evans, T. & Phaal, C. Proc. R. Soc. A270, 535–552 (1962).

    Google Scholar 

  6. Evans, T. & James, P. F. Phil. Mag. 11, 113–129 (1965).

    Article  ADS  Google Scholar 

  7. Mitsuishi, T., Nagasaki, H. & Uyeda, R. Proc. Jap. Acad. 27, 86–87 (1951).

    Article  Google Scholar 

  8. Pashley, D. W., Menter, J. W. & Bassett, G. A. Nature 179, 752–755 (1957).

    Article  ADS  CAS  Google Scholar 

  9. Lang, A. R. Nature 220, 652–657 (1968).

    Article  ADS  CAS  Google Scholar 

  10. Lang, A. R. J. Crystal Growth 42, 625–631 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Walker, J. Rep. Prog. Phys. 42, 1605–1659 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Lang, A. R. in The Properties of Diamond (ed. Field, J.) 425–469 (Academic, London, 1979).

    Google Scholar 

  13. Lang, A. R., Proc. phys. Soc. Lond. 84, 871–876 (1964).

    Article  ADS  CAS  Google Scholar 

  14. Evans, T. Diamond Research, 2–5 (Industrial Diamond Information Bureau, London, 1973).

    Google Scholar 

  15. Woods, G. S. Phil. Mag. 34, 993–1012 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Allen, B. P. & Evans, T. Proc. R. Soc. A375, 93–104 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Evans, T., Qi, Z. & Maguire, J. J. Phys. C14, L379–L384 (1981).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursill, L., Hutchison, J., Sumida, N. et al. Measurements of diamond lattice displacement by platelet defects with electron microscopic moiré patterns. Nature 292, 518–520 (1981). https://doi.org/10.1038/292518a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292518a0

  • Springer Nature Limited

Navigation