Skip to main content
Log in

Atmospheric nitrous oxide produced by solar protons and relativistic electrons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Nitric oxide (NO), which contributes to the destruction of stratospheric ozone, may be formed directly in the upper atmosphere by solar protons1,2 and by the precipitation of relativistic electrons from the Earth's radiation belts3. We now describe an alternative means by which solar proton (SP) events and relativistic electron precipitation (REP) events may lead to the production of stratospheric NO—the production of nitrous oxide (N2O) in the mesosphere, its downward migration and conversion in the stratosphere to NO by the reaction

N2O + O(1D) → 2 NO (1)

This process could amplify the direct NO production by >10%, which is significant. Mesospheric nitrous oxide mixing ratios increase to values as high as 6×10−7. due to REP- and SP-related production. Lateral transport will reduce these high values. But even so, mesospheric mixing ratios of N2O in the high latitudes would approach 10−7, which is considerably greater than those expected on the basis of theories which neglect REP- and SP-related production of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crutzen, P. J., Isaksen, I. S. A. & Reid, G. C. Science 189, 457 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Reid, G. C., Isaksen, I. S. A., Holzer, T. E. & Crutzen, P. J. Nature 259, 177 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Thorne, R. M. Science 195, 287 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Malcombe-Lawis, D. J. Nature 247, 540 (1974).

    Article  ADS  Google Scholar 

  5. Zipf, E. C. Nature 287, 523 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Prasad, S. S. in Solar–Terrestrial Influence on Weather and Climate (eds McCormac, B. M. & Seliga, T. A.) 299–304 (Reidel, Boston, 1979).

    Book  Google Scholar 

  7. Zipf, E. C. & Prasad, S. S. Nature 287, 525 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Swider, W. Geophys. Res. Lett. 6, 335 (1976).

    Article  ADS  Google Scholar 

  9. Cartwright, D. C., Chutjian, A. & Trajmar, S. Phys. Rev., A16, 1041 (1977).

    Article  MathSciNet  CAS  Google Scholar 

  10. Gilmore, F. Pap. at Defense Nuclear Agency–Air Force Geophysical Laboratory Nuclear Weapons Effects Chemistry Conf. Bedford (1980).

  11. Thorne, R. M. Pure appl. Geophys. 118, 128 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Imholf, W. L., Nightingale, R. W., Reagan, J. B. & Nakano, G. H. J. atmos. terr. Phys. 42, 443 (1980).

    Article  ADS  Google Scholar 

  13. Turco, R. P. & Whitten, R. C. NASA tech Pap. 1002 (NASA, Washington DC, 1977).

  14. Shimazaki, T., Ogawa, T. & Farrel, B. C. NASA tech. Not. TND–8399 (NASA, Washington DC, 1977).

  15. Logan, J. A., Prather, M., Wofsy, S. & McElroy, M. B. Phil. Trans. R. Soc. A290, 187 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Nicolet, M. & Cieslik, S. Planet. Space Sci. 28, 105 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Drummond, J. R. et al. The Nimbus 7 User's Guide (ed. Madrid, C. R.) (Goddard Space Flight Center, Greenbelt).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, S., Zipf, E. Atmospheric nitrous oxide produced by solar protons and relativistic electrons. Nature 291, 564–566 (1981). https://doi.org/10.1038/291564a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291564a0

  • Springer Nature Limited

This article is cited by

Navigation