Skip to main content
Log in

Relationship between increased aerobic glycolysis and DNA synthesis initiation studied using glycolytic mutant fibroblasts

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Reports from several laboratories have suggested that increased rates of glycolysis play an essential part in the initiation of DNA synthesis. This is based on observations that aerobic glycolysis: (1) occurs at low rate in resting mammalian cells and at very high rate in tumour cells1–3; (2) increases rapidly after DNA synthesis is initiated by addition of serum or purified growth factors4,5, and (3) correlates with the expression of the transformed phenotype6. Also, specific inhibitors of aerobic glycolysis prevent the initiation of DNA synthesis4. To determine whether the rapid activation of phosphofructokinase—and therefore glycolysis—by purified growth factors7 is necessary for the initiation of cell proliferation, we have isolated and studied two classes of glycolytic mutants. The first, isolated from Chinese hamster fibroblasts, has a total block in the glycolytic pathway8. The second, from hamster and Fisher rat fibroblasts maintains a permanent high rate of glycolysis. We have found that both classes of mutants retain normal control of DNA synthesis in response to serum. This dissociation indicates that growth-factor-stimulated glycolysis is not involved in the control of initiation of DNA synthesis and cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warburg, O. Science, 123, 309–314 (1956).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ramaiah, A. Curr. Top. Cell Regul. 8, 297–345 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Suolinna, E. M., Lang, D. R. & Racker, E. J. natn. Cancer Inst. 53, 1515–1519 (1974).

    Article  CAS  Google Scholar 

  4. Rubin, H. & Fodge, D. in Control of Proliferation in Animal Cells (eds Clarkson, B. & Baserga, R.) 1, 801–816 (Cold Spring Harbor Laboratory, 1974).

    Google Scholar 

  5. Diamond, I., Legg, A., Schneider, J. & Rozengurt, E. J. biol. Chem. 253, 866–871 (1978).

    CAS  PubMed  Google Scholar 

  6. Carroll, R., Ash, J., Vogt, P. & Singer, J. Proc. natn. Acad. Sci. U.S.A. 75, 5015–5019 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Schneider, J., Diamond, I. & Rozengurt, E. J. biol. Chem. 253, 872–877 (1978).

    CAS  PubMed  Google Scholar 

  8. Pouysségur, J., Franchi, A., Salomon, J. C. & Silvestre, P. Proc. natn. Acad. Sci. U.S.A. 77, 2698–2701 (1980).

    Article  ADS  Google Scholar 

  9. Pérez, R., Franchi, A. & Pouysségur, J. Eur. J. Cell Biol. 22, 541 (1980).

    Google Scholar 

  10. Seif, R. & Cuzin, F. J. Virol. 24, 721–728 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Franchi, A., Silvestre, P., Pérez, R. & Pouysségur, J. (in preparation).

  12. Thrash, C. & Cunningham, D. Nature 252, 45–47 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Silvestre, P. thesis, Univ. Nice (1980).

  14. Zielke, R., Ozand, P., Tildon, T., Sevdalian, D. & Cornblath, M. Proc. natn. Acad. Sci. U.S.A. 73, 4110–4114 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouysségur, J., Franchi, A. & Silvestre, P. Relationship between increased aerobic glycolysis and DNA synthesis initiation studied using glycolytic mutant fibroblasts. Nature 287, 445–447 (1980). https://doi.org/10.1038/287445a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287445a0

  • Springer Nature Limited

This article is cited by

Navigation