Skip to main content
Log in

Triosephosphates as intermediates of the Crabtree effect

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

An increase in glucose concentration in the medium rapidly decreases respiration rate in many cell types, including tumor cells. The molecular mechanism of this phenomenon, the Crabtree effect, is still unclear. It was shown earlier that adding the intermediate product of glycolysis fructose-1,6-bisphosphate to isolated mitochondria suppresses their respiration. To study possible roles of glycolytic intermediates in the Crabtree effect, we used a model organism, the yeast Saccharomyces cerevisiae. To have the option to rapidly increase intracellular concentrations of certain glycolytic intermediates, we used mutant cells with glycolysis blocked at different stages. We studied fast effects of glucose addition on the respiration rate in such cells. We found that addition of glucose affected cells with deleted phosphoglycerate mutase (strain gpm1-delta) more strongly than ones with inactivated aldolase or phosphofructokinase. In the case of preincubation of gpm1-delta cells with 2-deoxyglucose, which blocks glycolysis at the stage of 2-deoxyglucosephosphate formation, the effect of glucose addition was absent. This suggests that triosephosphates are intermediates of the Crabtree effect. Apart from this, the incubation of gpm1-delta cells in galactose-containing medium appeared to cause a large increase in their size. It was previously shown that galactose addition did not have any short-term effect on respiration rate of gpm1-delta cells and, at the same time, strongly suppressed their growth rate. Apparently, the influence of increasing triosephosphate concentration on yeast physiology is not limited to the activation of the Crabtree effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOG:

2-deoxyglucose

FCCP:

carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

YP:

yeast extract + peptone

YPD:

yeast extract + peptone + glucose

References

  1. Sokolov, S. S., Balakireva, A. V., Markova, O. V., and Severin, F. F. (2015) Negative feedback of glycolysis and oxidative phosphorylation: mechanisms of and reasons for it, Biochemistry, 80, 559–564.

    CAS  PubMed  Google Scholar 

  2. Warburg, O. (1956) On the origin of cancer cells, Science, 123, 309–314.

    Article  CAS  PubMed  Google Scholar 

  3. Krisher, R. L., and Prather, R. S. (2012) A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation, Mol. Reprod. Dev., 79, 311–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harvey, A. J., Kind, K. L., and Thompson, J. G. (2002) REDOX regulation of early embryo development, Reproduction, 123, 479–486.

    Article  CAS  PubMed  Google Scholar 

  5. Kayikci, O., and Nielsen, J. (2015) Glucose repression in Saccharomyces cerevisiae, FEMS Yeast Res., 15.

    Google Scholar 

  6. Knorre, D. A., Markova, O. V., Smirnova, E. A., Karavaeva, I. E., Sokolov, S. S., and Severin, F. F. (2014) Dodecyltriphenylphosphonium inhibits multiple drug resistance in the yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta, 450, 1481–1484.

    CAS  Google Scholar 

  7. Mills, E. L., Kelly, B., Logan, A., Costa, A. S., Varma, M., Bryant, C. E., Tourlomousis, P., Dabritz, J. H., Gottlieb, E., Latorre, I., Corr, S. C., McManus, G., Ryan, D., Jacobs, H. T., Szibor, M., Xavier, R. J., Braun, T., Frezza, C., Murphy, M. P., and O’Neill, L. A. (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages, Cell, 167, 457–470.

    Article  CAS  PubMed  Google Scholar 

  8. Formentini, L., Sanchez-Arago, M., Sanchez-Cenizo, L., and Cuezva, J. M. (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response, Mol. Cell, 45, 731–742.

    Article  CAS  PubMed  Google Scholar 

  9. Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria, FEBS Lett., 416, 15–18.

    Article  CAS  PubMed  Google Scholar 

  10. Crabtree, H. G. (1928) The carbohydrate metabolism of certain pathological overgrowths, Biochem. J., 22, 1289–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Diaz-Ruiz, R., Rigoulet, M., and Devin, A. (2011) The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression, Biochim. Biophys. Acta, 1807, 568–576.

    Article  CAS  PubMed  Google Scholar 

  12. Postma, E., Verduyn, C., Scheffers, W. A., and Van Dijken, J. P. (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae, Appl. Environ. Microbiol., 55, 468–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Van Urk, H., Voll, W. S., Scheffers, W. A., and Van Dijken, J. P. (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts, Appl. Environ. Microbiol., 56, 281–287.

    PubMed  PubMed Central  Google Scholar 

  14. Marc, J., Feria-Gervasio, D., Mouret, J. R., and Guillouet, S. E. (2013) Impact of oleic acid as co-substrate of glucose on “short” and “long-term” Crabtree effect in Saccharomyces cerevisiae, Microb. Cell Factories, 23, 83.

    Article  Google Scholar 

  15. Diaz-Ruiz, R., Averet, N., Araiza, D., Pinson, B., UribeCarvajal, S., Devin, A., and Rigoulet, M. (2008) Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J. Biol. Chem., 283, 26948–26955.

    Article  CAS  PubMed  Google Scholar 

  16. Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast, 14, 953–961.

    Article  CAS  PubMed  Google Scholar 

  17. Kembro, J. M., Aon, M. A., Winslow, R. L., O’Rourke, B., and Cortassa, S. (2013) Integrating mitochondrial energet-ics, redox and ROS metabolic networks: a two-compartment model, Biophys. J., 104, 332–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klingenberg, M. (2008) The ADP and ATP transport in mitochondria and its carrier, Biochim. Biophys. Acta, 1778, 1978–2021.

    Article  CAS  PubMed  Google Scholar 

  19. Hampp, R. (1985) Triosephosphates modulate leaf mitochondrial phosphorylation by inhibition and uncoupling of electron transport, Plant Physiol., 79, 690–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCashin, B. G., Cossins, E. A., and Canvin, D. T. (1988) Dark respiration during photosynthesis in wheat leaf slices, Plant Physiol., 87, 155–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reddy, M. M., Vani, T., and Raghavendra, A. S. (1991) Light-enhanced dark respiration in mesophyll protoplasts from leaves of pea, Plant Physiol., 96, 1368–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Agrimi, G., Brambilla, L., Frascotti, G., Pisano, I., Porro, D., Vai, M., and Palmieri, L. (2011) Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis, Appl. Environ. Microbiol., 77, 2239–2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanchez, N. S., Calahorra, M., Gonzalez-Hernandez, J. C., and Pena, A. (2006) Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae, Yeast, 23, 361–374.

    Article  CAS  PubMed  Google Scholar 

  24. Papini, M., Nookaew, I., Scalcinati, G., Siewers, V., and Nielsen, J. (2010) Phosphoglycerate mutase knock-out mutant Saccharomyces cerevisiae: physiological investigation and transcriptome analysis, Biotechnol. J., 10, 1016–1027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. Severin.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 4, pp. 626-633.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.S., Markova, O.V., Nikolaeva, K.D. et al. Triosephosphates as intermediates of the Crabtree effect. Biochemistry Moscow 82, 458–464 (2017). https://doi.org/10.1134/S0006297917040071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917040071

Keywords

Navigation