Skip to main content
Log in

Poly(ADP-ribose) levels in carcinogen-treated cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Several reports indicate that intracellular levels of NAD are rapidly decreased by DNA-damaging agents such as strep-tozotocin1–7, neocarzinostatin8,9 and ionising radiation8–11. Similarly, evidence obtained from studies in isolated nuclei and permeabilised cells indicates that DNA damage caused by several alkylating chemicals12–15, X rays16,17 and DNA-hydrolysing enzymes18,19 elicit a considerable increase in the activity of poly(ADP-ribose) polymerase, a chromosomal enzyme which uses NAD as a substrate in the formation of poly(ADP-ribose) in histones and other nuclear proteins20,21. Thus, it has been suggested that DNA-damaging agents lower NAD levels by causing an increase in poly(ADP-ribose) synthesis9,12,13. As DNA damage initiates DNA repair mechanisms, it has also been argued that poly(ADP-ribose) is involved in DNA repair8,12,14,17,22,23. Such possibilities would be strongly supported if an actual increase in the intracellular levels of poly(ADP-ribose) could be shown to occur after induction of DNA damage. We now present data obtained using a new technique which has enabled us to measure the levels of poly(ADP-ribose) in vivo in SV40 virus-transformed 3T3 cells (SVT2). We show that treatment of these cells with the powerful mutagen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) produces, concomitantly with a decrease in NAD levels, a dramatic increase in the intracellular levels of poly (ADP-ribose).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schein, P. S. & Loftus, S. Cancer Res. 28, 1501–1506 (1968).

    CAS  PubMed  Google Scholar 

  2. Ho, C. K. & Hashim, S. A. Diabetes 21, 789–793 (1972).

    Article  CAS  Google Scholar 

  3. Chang, A. Y. Biochim. biophys. Acta 261, 77–84 (1972).

    Article  CAS  Google Scholar 

  4. Hinz, M., Katsilambros, N., Maier, V., Schatz, H. & Pfeiffer, E. F. FEBS Lett. 30, 225–228 (1973).

    Article  CAS  Google Scholar 

  5. Schein, P. S., Cooney, D. A., McMenamin, M. G. & Anderson, T. Biochem. Pharmac. 22, 2625–2631 (1973).

    Article  CAS  Google Scholar 

  6. Gunnarson, R., Berne, C. & Hellerstrom, C. Biochem. J. 140, 487–494 (1974).

    Article  Google Scholar 

  7. Davies, M. I., Halldorsson, H., Shall, S. & Skidmore, C. J. Biochem. Soc. Trans. 4, 635–637 (1976).

    Article  CAS  Google Scholar 

  8. Davies, M. I., Shall, S. & Skidmore, C. J. Biochem. Soc. Trans. 5, 949–950 (1977).

    Article  CAS  Google Scholar 

  9. Goodwin, P. M., Lewis, P. J., Davies, M. I., Skidmore, C. J. & Shall, S. Biochim. biophys.Acta 543, 576–582 (1978).

    Article  CAS  Google Scholar 

  10. Campagnari, F., Whitfield, J. F. & Bertazzoni, U. Expl Cell Res. 42, 646–656 (1966).

    Article  CAS  Google Scholar 

  11. Hilz, H., Hlavica, P. & Bertram, B. Biochem. Z. 338, 283–299 (1963).

    CAS  PubMed  Google Scholar 

  12. Smulson, M. E., Schein, P., Mullins, D. W. & Sudhakar, S. Cancer Res. 37, 3006–3012 (1977).

    CAS  PubMed  Google Scholar 

  13. Sudhakar, S., Tew, K. D. & Smulson, M. E. Cancer Res. 39, 1405–1410 (1979).

    CAS  PubMed  Google Scholar 

  14. Berger, N. A., Sikorski, G. W., Petzold, S. J. & Kurohara, K. K. Fedn Proc. 38, 619 (1979).

    Google Scholar 

  15. Jacobson, M. K. & Jacobson, E. L. J. supramolec. Struct. Suppl. 2, 74 (1978).

    Google Scholar 

  16. Benjamin, R. C. & Gill, D. M. J.supramolec. Struct. Suppl. 2, 74 (1978).

    Google Scholar 

  17. Benjamin, R. C. & Gill, D. M. Fedn Proc. 38, 619 (1979).

    Google Scholar 

  18. Miller, E. G. Biochem. biophys. Res. Commun. 66, 280–286 (1975).

    Article  CAS  Google Scholar 

  19. Miller, E. G. Biochem. biophys. Acta 395, 191–200 (1975).

    CAS  PubMed  Google Scholar 

  20. Hilz, H. & Stone, P. Rev. Physiol. Biochem. Pharmac. 76, 1–58 (1976).

    Article  CAS  Google Scholar 

  21. Hayaishi, O. & Ueda, K. A. Rev. Biochem. 46, 95–116 (1977).

    Article  CAS  Google Scholar 

  22. Davies, M. I., Halldorsson, H., Nduka, N., Shall, S. & Skidmore, C. J. Biochem. Soc. Trans. 6, 1056–1057 (1978).

    Article  CAS  Google Scholar 

  23. Jacobson, E. L. & Narasimhan, G. Fedn Proc. 38, 619 (1979).

    Google Scholar 

  24. Barrio, J. R., Secrist, J. A. III & Leonard, N. J. Biochem. biophys. Res. Commun. 46, 597–604 (1972).

    Article  CAS  Google Scholar 

  25. Magee, P. N., Montesano, R. & Preussman, R. in Chemical Carcinogens (ed. Searle, E. E.) (Am. chem. Soc. Monogr., Washington, 1976).

    Google Scholar 

  26. Lijinsky, W. Prog. Nucleic Acid Res. 17, 247–269 (1976).

    Article  CAS  Google Scholar 

  27. Jacobson, E. L. & Jacobson, M. K. Archs Biochem. Biophys. 175, 627–634 (1976).

    Article  CAS  Google Scholar 

  28. Cuatrecasas, P. J. biol. Chem. 245, 3059–3065 (1975).

    Google Scholar 

  29. Jacobson, E. L., Lange, R. A. & Jacobson, M. K. J. cell. Physiol. 99, 417–426 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juarez-Salinas, H., Sims, J. & Jacobson, M. Poly(ADP-ribose) levels in carcinogen-treated cells. Nature 282, 740–741 (1979). https://doi.org/10.1038/282740a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282740a0

  • Springer Nature Limited

This article is cited by

Navigation