Skip to main content
Log in

Light-activated drug confirms a mechanism of ion channel blockade

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A VARIETY of mechanisms underlie the pharmacological blockade of membrane excitability. Some drugs seem to reduce the frequency at which ion channels open; a good example is the effect of curare on acetylcholine receptor channels at normal resting potentials. Another sort of mechanism may account for the action of many local anaesthetics and related drugs containing charged ammonium groups. It is postulated that such molecules block transmembrane currents as they bind to sites within open ion channels, much like a plug in a drain, with the important difference that the events occur on a millisecond time scale. This model, which we shall call ‘open-channel blockade’, was first applied to the effect of internal tetraethylammonium ions on K+ channels in squid axon1 and more recently to similar actions of local anaesthetics on acetylcholine receptor channels2–4 and on electrically excitable Na+ channels5. (Curare seems to exert an additional open-channel blockade at high negative potentials6,7.) The concept of open-channel blockade would receive direct experimental support from the demonstration that the blockade is exerted even if the blocking molecule is not bound to the channel (or indeed is not present at all) until after the channel opens. Such a demonstration is made possible by a drug that (1) blocks acetylcholine receptor channels in Electrophorus electroplaque, and (2) is created, in less than a millisecond, by a flash of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, C. M. J. gen. Physiol. 50, 491–503 (1966).

    Article  CAS  Google Scholar 

  2. Steinbach, A. B. J. gen. Physiol. 52, 144–161 (1968).

    Article  CAS  Google Scholar 

  3. Steinbach, A. B. J. gen. Physiol. 52, 162–180 (1968).

    Article  CAS  Google Scholar 

  4. Adams, P. R. J. Physiol., Lond., 246, 61–63P (1975).

    Google Scholar 

  5. Strichartz, G. R. J. gen. Physiol. 62, 37–57 (1973).

    Article  CAS  Google Scholar 

  6. Katz, B. & Miledi, R. Proc. R. Soc. B203, 119–133 (1978).

    ADS  CAS  Google Scholar 

  7. Colquhoun, D., Dreyer, F. & Sheridan, R. E. J. Physiol., Lond. (in the press).

  8. Bieth, J., Wassermann, D., Vratsanos, S. M. & Erlanger, B. F. Proc. natn. Acad. Sci. U.S.A. 66, 850–854 (1970).

    Article  ADS  CAS  Google Scholar 

  9. Sheridan, R. E. & Lester, H. A. Proc. natn. Acad. Sci. U.S.A. 72, 3496–3500 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Sheridan, R. E. & Lester, H. A. J. gen. Physiol. 70, 187–219 (1977).

    Article  CAS  Google Scholar 

  11. Lester, H. A., Koblin, D. D. & Sheridan, R. E. Biophys. J. 21, 181–194 (1978).

    Article  CAS  Google Scholar 

  12. Furukawa, T. Jap. J. Physiol. 7, 199–212 (1957).

    Article  CAS  Google Scholar 

  13. Lester, H. A., Changeux, J.-P. & Sheridan, R. E. J. gen. Physiol. 65, 797–816 (1975).

    Article  CAS  Google Scholar 

  14. Beam, K. G. J. Physiol., Lond. 258, 279–300 (1976).

    Article  CAS  Google Scholar 

  15. Adams, P. R. J. Physiol., Lond. 268, 291–318 (1977).

    Article  CAS  Google Scholar 

  16. Neher, E. & Steinbach, J. H. J. Physiol., Lond. 277, 153–176 (1978).

    Article  CAS  Google Scholar 

  17. Koblin, D. D. & Lester, H. A. Molec. Pharmac. (in the press).

  18. Nass, M. M., Lester, H. A. & Krouse, M. E. Biophys. J. 24, 135–160 (1978).

    Article  CAS  Google Scholar 

  19. Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 151–171 (1972).

    Article  CAS  Google Scholar 

  20. Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 173–197 (1972).

    Article  CAS  Google Scholar 

  21. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–691 (1973).

    Article  CAS  Google Scholar 

  22. Wathey, J. C., Nass, M. M. & Lester, H. A. Biophys. J. 27, 145–164 (1979).

    Article  CAS  Google Scholar 

  23. Katz, B. & Miledi, R. J. Physiol., Lond. 230, 707–717 (1973).

    Article  CAS  Google Scholar 

  24. Rosenberry, T. in Adv. Enzymol. 43, 103–218 (1975).

    Google Scholar 

  25. Deal, W. J., Erlanger, B. F. & Nachmansohn, D. Proc. natn. Acad. Sci. U.S.A. 64, 1230–1234 (1969).

    Article  ADS  CAS  Google Scholar 

  26. Bartels, E., Wassermann, N. H. & Erlanger, B. F. Proc. natn. Acad. Sci. U.S.A. 68, 1820–1823 (1971).

    Article  ADS  CAS  Google Scholar 

  27. Erlanger, B. F. A. Rev. Biochem. 45, 267–283 (1976).

    Article  CAS  Google Scholar 

  28. Lester, H. A. & Chang, H. W. Nature 266, 373–374 (1977).

    Article  ADS  CAS  Google Scholar 

  29. Wassermann, N. H., Bartels, E. & Erlanger, B. F. Proc. natn. Acad. Sci. U.S.A. 76, 256–259 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LESTER, H., KROUSE, M., NASS, M. et al. Light-activated drug confirms a mechanism of ion channel blockade. Nature 280, 509–510 (1979). https://doi.org/10.1038/280509a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280509a0

  • Springer Nature Limited

This article is cited by

Navigation