Skip to main content
Log in

Cholesterol modulates activity of calcium-dependent ATPase of the sarcoplasmic reticulum

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

BIOMEMBRANES consist of an asymmetric lipid bilayer matrix into which and around which the various proteins are situated. The proteins may be attached to the outside of the lipid bilayer (extrinsic proteins), but in many cases the proteins (intrinsic proteins) are embedded within, and can span, the bilayer. Associated with this is the idea that in many cases the lipid matrix is in a fluid condition in which the lipids are essentially above their transition temperature (Tc) and able to diffuse along the bilayer length. The perturbation introduced into the lipid bilayer by the presence of an intrinsic protein has recently been discussed2,3. Some workers4,5 have suggested that intrinsic proteins, for example the Ca2+-ATPase of the sarcoplasmic reticulum, carry with them, even when excess bulk fluid lipid occurs, a shell of immobilised lipid, referred to as an annulus, which controls the enzyme activity. The shell is said to exclude cholesterol so that cholesterol molecules do not influence the enzyme activity. We report here the use of cholesterol-enriched liposomes to reversibly vary the content of cholesterol in the sarcoplasmic membranes. We show in contrast to the previous work that as the cholesterol content of the membrane varies so does the activity of the Ca2+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman, D. Q. Rev. Biophys. 8, 185–235 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Jost, P. D., Griffith, O. H., Capaldi, R. A. & Vanderkooi, G. Proc. natn. Acad. Sci. U.S.A. 70, 480–484 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Cornell, B. A., Sacre, M. M., Peel, W. E. & Chapman, D. FEBS Lett. 90, 29–35 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Hesketh, T. R. et al. Biochemistry 15, 4145–4151 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Warren, G. B., Houslay, M. D., Metcalfe, J. C. & Birdsall, N. J. M. Nature 255, 684–687 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Warren, G. B., Toon, P. A., Birdsall, N.J.M., Lee, A. G. & Metcalfe, J. C. Proc. natn. Acad. Sci. U.S.A. 71, 622–628 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Bruckdorfer, R. K., Graham, J. M. & Green, C. Eur. J. Biochem. 4, 512–518 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. Hope, M. J., Bruckdorfer, R. K., Hart, C. A. & Lucy, J.A. Biochem. J. 166, 255–263 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martonosi, A. Biochem. biophys. Res. Commun. 36, 1039–1044 (1969).

    Article  CAS  PubMed  Google Scholar 

  10. Meissner, G. & Fleischer, S. Biochim. biophys. Acta. 241, 356–378 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Hasselbach, W. Prog. Biophys. molec. Biol. 14, 167–222 (1964).

    Article  CAS  Google Scholar 

  12. Weber, A. in Curr. Topics in Bioenergetics Vol. 1 (ed. Sanadi, D.) 203–254 (Academic, New York, 1966).

    Google Scholar 

  13. Thorley-Lawson, D. A. & Green, N. M. Eur. J. Biochem. 40, 403–413 (1973).

    Article  CAS  PubMed  Google Scholar 

  14. Martonosi, A., Donley, J. & Halpin, R. A. J. biol. Chem. 243, 61–70 (1968).

    CAS  PubMed  Google Scholar 

  15. Seraydarian, K. & Mommaerts, W. F. H. M. J. Cell Biol. 26, 641–656 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rose, H. G. & Oklander, M. J. Lipid Res. 6, 428–431 (1965).

    CAS  PubMed  Google Scholar 

  17. King, E. J. Biochem. J. 26, 292–297 (1932).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  19. Vigo, C., Goni, F. M., Quinn, P. J. & Chapman, D. Biochim. biophys. Acta. 508, 1–14 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Ladbrooke, B. D., Williams, R. M. & Chapman, D. Biochim. biophys. Acta 150, 333–340 (1968).

    Article  CAS  PubMed  Google Scholar 

  21. De Kruyff, B., Demel, R. A. & van Deenen, L. L. M. Biochim. biophys. Acta 255, 331–347 (1971).

    Article  Google Scholar 

  22. Davis, D. G., Inesi, G. & Gulik-Krcywicki, T. Biochemistry 15, 1271–1276 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Martonosi, M. A. FEBS Lett. 47, 327–329 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. Dean, W. L. & Tanford, C. J. biol. Chem. 252, 3551–3553 (1977).

    CAS  PubMed  Google Scholar 

  25. Moore, B. M., Lentz, B. R. & Meissner, G. Biochemistry 17, 5248–5255 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. Chapman, D., Gomez-Fernandez, J. C. & Goni, F. M. FEBS Lett. 98, 211–223 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MADDEN, T., QUINN, P. & CHAPMAN, D. Cholesterol modulates activity of calcium-dependent ATPase of the sarcoplasmic reticulum. Nature 279, 538–541 (1979). https://doi.org/10.1038/279538a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279538a0

  • Springer Nature Limited

This article is cited by

Navigation