Skip to main content
Log in

Is the red cell calcium pump regulated by ATP?

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE very low physiological level of calcium in the human red cell is maintained by a powerful ATP-fuelled Ca extrusion pump which has been extensively studied1. Recently evidence has been accumulating that the kinetic properties of the active Ca flux and associated (Ca + Mg) ATPase activity depend very much on the experimental conditions and/or the manner of preparation of the red cell membranes or resealed ghosts2–4. The variability may reflect the nature or degree of interaction between the membrane Ca pump and a cytoplasmic activator protein described recently5–7, which could be involved in regulation of physiological Ca levels. In previous work with whole red cells8,9 or resealed ghosts10 the concentrations of the major Ca pump ligands, ATP and/or Ca, have been changing during the course of the reaction. Because of the possible importance of the ligand conditions in assessing the physiological functioning of the Ca pump, we have looked at (Ca + Mg)-dependent ATP hydrolysis in resealed ghosts with buffered ATP and Ca levels and at the active Ca flux with a buffered ATP level. The experiments reported here show that both the ATP hydrolysis and the Ca flux are activated with two distinct ATP affinities and this raises the possibility of regulation of the Ca pump by ATP in the region of the lower affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schatzmann, H. J. in Current topics in membranes and transport Vol. 6, 125 (1975).

    Google Scholar 

  2. Quist, E. & Roufogalis, D. D. Archs Biochem. Biophys. 168, 240–251 (1975).

    Article  CAS  Google Scholar 

  3. Sharff, O. Biochim biophys. Acta 468, 202–218 (1976).

    Google Scholar 

  4. Sharff, O. & Foder, B. Biochim. biophys. Acta 483, 416–427 (1977).

    Article  Google Scholar 

  5. Gopinath, R. M. & Vicenzi, F. F. Biochem. biophys. Res. Commun. 77, 1203–1209 (1977).

    Article  CAS  Google Scholar 

  6. Jarrett, H. W. & Penniston, J. T. Biochem. biophys. Res. Commun. 77, 1210–1216 (1977).

    Article  CAS  Google Scholar 

  7. Jarrett, H. W. & Penniston, J. T. J. biol. Chem. 253, 4676–4682 (1978).

    CAS  PubMed  Google Scholar 

  8. Lew, V. L. & Ferreira, H. Nature 259, 47–49 (1976).

    Article  ADS  Google Scholar 

  9. Sarkadi, B., Szasz, I., Gerloczy, A. & Gardos, G. Biochim. biophys. Acta 464, 93–107 (1977).

    Article  CAS  Google Scholar 

  10. Schatzmann, H. J. J. Physiol., Lond. 235, 551–569 (1973).

    Article  CAS  Google Scholar 

  11. Glynn, I. M. & Karlish, S. J. D. J. Physiol., Lond. 256, 465–496 (1976).

    Article  CAS  Google Scholar 

  12. Wolf, U. Experientia 29, 241–249 (1973).

    Article  CAS  Google Scholar 

  13. Wolf, M. U. Biochim. biophys. Acta 266, 361–375 (1972).

    Article  CAS  Google Scholar 

  14. Schatzmann, H. J. J. Membrane Biol. 35, 149–158 (1977).

    Article  CAS  Google Scholar 

  15. Wolf, U., Dieckvoss, G. & Lichtner, R. Acta biol. med. germ. 36, 847–858 (1977).

    CAS  PubMed  Google Scholar 

  16. Sharff, O. & Foder, B. Biochim. biophys. Acta 509, 67–77 (1978).

    Article  Google Scholar 

  17. Sarkadi, B., Macintyre, J. D. & Gardos, G. FEBS Lett. 89, 78–82 (1978).

    Article  CAS  Google Scholar 

  18. Knauf, P., Proverbio, S. & Hoffman, J. J. gen. Physiol. 63, 324–336 (1974).

    Article  CAS  Google Scholar 

  19. Rega, A. & Garrahan, P. J. J. Membrane Biol. 22, 313–327 (1975).

    Article  CAS  Google Scholar 

  20. Post, R. L., Hegevary, C. & Kume, S. J. biol. Chem. 247, 6530–6540 (1972).

    CAS  PubMed  Google Scholar 

  21. Jorgensen, P. L. Biochim. biophys. Acta 401, 339–415 (1975).

    Google Scholar 

  22. Karlish, S. J. D., Yates, D. W. & Glynn, I. M. Biochim. biophys. Acta 525, 252–264 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MUALEM, S., KARLISH, S. Is the red cell calcium pump regulated by ATP?. Nature 277, 238–240 (1979). https://doi.org/10.1038/277238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/277238a0

  • Springer Nature Limited

This article is cited by

Navigation