Skip to main content
Log in

Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Recent progress1,2,3 in the synthesis of high-quality single-walled carbon nanotubes4 (SWNTs) has enabled the measurement of their physical and materials properties5,6,7,8. The idea that nanotubes might be integrated with conventional microstructures to obtain new types of nanoscale devices, however, requires an ability to synthesize, isolate, manipulate and connect individual nanotubes. Here we describe a strategy for making high-quality individual SWNTs on silicon wafers patterned with micrometre-scale islands of catalytic material. We synthesize SWNTs by chemical vapour deposition of methane on the patterned substrates. Many of the synthesized nanotubes are perfect, individual SWNTs with diameters of 1–3 nm and lengths of up to tens of micrometres. The nanotubes are rooted in the islands, and are easily located, characterized and manipulated with the scanning electron microscope and atomic force microscope. Some of the SWNTs bridge two metallic islands, offering the prospect of using this approach to develop ultrafine electrical interconnects and other devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Schematic of process flow.
Figure 2: Nanotubes grown on a catalyst-patterned substrate.
Figure 3: Topography images of individual SWNTs recorded by tapping mode AFM.
Figure 4: A transmission electron microscope (TEM) image (scale bar: 50 nm) of an individual SWNT synthesized on supported catalysts by the methane CVD approach.

Similar content being viewed by others

References

  1. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Journet, C. et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Bethune, D. S. et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–477 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  7. Odom, T., Huang, J., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1997).

    Article  ADS  Google Scholar 

  9. Kiang, C.-H., Goddard, W. A., Beyers, R., Salem, J. R. & Bethune, D. S. Catalytic synthesis of single-layer carbon nanotubes with a wide range of diameters. J. Phys. Chem. 98, 6612–6618 (1994).

    Article  CAS  Google Scholar 

  10. Lin, X., Wang, X. K., Dravid, V. P., Chang, R. P. H. & Ketterson, J. B. Large scale synthesis of single-shell carbon nanotubes. Appl. Phys. Lett. 64, 181–183 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Iijima, S. Carbon nanotubes. MRS Bull. 19, 43–49 (1994).

    Article  CAS  Google Scholar 

  12. Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics—elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997).

    Article  CAS  Google Scholar 

  13. Tibbetts, G. G. in Carbon Fibers, Filaments and Composites 73–94 (Kluwer Academic, Amsterdam, 1990).

    Book  Google Scholar 

  14. Tibbetts, G. G. Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl. Phys. Lett. 42, 666–668 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Jaeger, H. & Behrsing, T. The dual nature of vapour-grown carbon fibres. Composites Sci. Technol. 51, 231–242 (1994).

    Article  CAS  Google Scholar 

  16. Qin, L. C. & Iijima, S. Fibrilliform growth of carbon nanotubes. Mater. Lett. 30, 311–314 (1997).

    Article  CAS  Google Scholar 

  17. Kong, J., Cassell, A. & Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567–574 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Amelinckx, S. et al. Aformation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265, 635–639 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Baker, R. T. K. Catalytic growth of carbon filaments. Carbon 27, 315–323 (1989).

    Article  CAS  Google Scholar 

  20. Tibbetts, G. G., Devour, M. G. & Rodda, E. J. An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles. Carbon 25, 367–375 (1987).

    Article  CAS  Google Scholar 

  21. Tibbetts, G. G. Why are carbon filaments tubular? J. Cryst. Growth 66, 632–638 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Brauman, J. Han, C. Marcus, T. Kenny, A. Kapiltulnik and A. Morpurgo for helpful discussions, and J. Kim for his assistance with SEM. This work is partly supported by a Camille and Henry Dreyfus New Faculty Award (H.D.); the NSF and the Office of Naval Research (JSEP) (C.F.Q.); and NASA Ames Research Center (A.M.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, J., Soh, H., Cassell, A. et al. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998). https://doi.org/10.1038/27632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27632

  • Springer Nature Limited

This article is cited by

Navigation