Skip to main content
Log in

Carbon monoxide emission as a precise tracer of molecular gas in the Andromeda galaxy

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Stars are known to form in clouds of cold molecular hydrogen, which are relatively poorly understood despite being one of the main components of the interstellar medium. The problem is that H2 is invisible in the cold interstellar medium, so its distribution and motion must be inferred from observations of minor constituents of the clouds, such as carbon monoxide and dust. Most of our present knowledge comes from observations of CO emission, but there is much debate on whether this is an effective tracer of H2: it might miss a large fraction of the molecular gas1. It is difficult to address this question on the basis of observations within the Milky Way alone, whose edge-on orientation makes it hard to discern the distant cloud structures. We have therefore surveyed the CO emission of the molecular clouds of M31 (the Andromeda galaxy), the nearest spiral galaxy to the Milky Way, and investigated the extent to which it follows the extinction of starlight by dust. We find a remarkably tight association between the CO emission and the dust, from which we conclude that CO does indeed trace all of the molecular gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: CO line intensity distribution.
Figure 2: I* (CO) contours around D47 and D84, observed with the 30-m telescope (a) and the IRAM interferometer (b), superimposed on an Hα image. H IIregionsand stars are shown in red.
Figure 3: Gas–dust correlation.

Similar content being viewed by others

References

  1. Maloney, P. & Black, J. H. Molecular gas abundances in galaxies. Astrophys. J. 325, 389–401 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Stanek, K. Z. & Garnavich, P. M. Distance to M31 with the HST and Hipparcos Red Clump Stars. Astrophys. J. Lett. 503, L131–L134 (1998).

    Article  ADS  Google Scholar 

  3. Hodge, P. The Andromeda Galaxy Ch. 10–12 (Astrophysics and Space Science Library, Vol. 176, Kluwer, Dordrecht, 1992).

    Book  Google Scholar 

  4. Walterbos, R. A. M. & Kennicutt, R. C. J An optical study of stars and dust in the Andromeda galaxy. Astron. Astrophys. 198, 61–86 (1988).

    ADS  CAS  Google Scholar 

  5. Brinks, E. & Shane, W. W. Ahigh resolution H Iline survey of M 31. Astron. Astrophys. Suppl. 55, 179–251 (1984).

    ADS  CAS  Google Scholar 

  6. Dame, T. M. et al. Acomplete CO survey of M 31. Astrophys. J. 418, 730–742 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Loinard, L. et al. Molecular spiral arms in M 31. Astrophys. J. 469, L101–L104 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Loinard, L. & Allen, R. J. Cold massive molecular clouds in the inner disk of M 31. Astrophys. J. 499, 227–233 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Tilanus, R. P. J. & Allen, R. J. Spiral structure of M 83. Astron. Astrophys. 274, 707–729 (1993).

    ADS  CAS  Google Scholar 

  10. Bohlin, R. C., Savage, B. D. & Drake, J. F. Asurvey of interstellar HI from Lα absorption measurements. Astrophys. J. 224, 132–142 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Rand, R. J., Kulkarni, S. R. & Rice, W. Star formation and the distribution of HI and infrared emission in M 51. Astrophys. J. 390, 66–78 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Guélin, M. et al. 1.3 mm emission in the disk of NGC 891: evidence of cold dust. Astron. Astrophys. 279, L37–L40 (1993).

    ADS  Google Scholar 

  13. Guélin, M. Cold dust emission from the spiral arms of M 51. Astron. Astrophys. 298, L29–L32 (1995).

    ADS  Google Scholar 

  14. Blair, W. P., Kirshner, R. P. & Chevalier, R. A. Abundance gradients in M 31. Astrophys. J. 254, 50–69 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Walterbos, R. A. M. & Schwering, P. B. W. Infrared emission from interstellar dust in the Andromeda Galaxy. Astron. Astrophys. 180, 27–49 (1987).

    ADS  CAS  Google Scholar 

  16. Strong, A. W. & Mattox, J. R. Gradient model analysis of EGRET diffuse Galactic γ-ray emission. Astron. Astrophys. 308, L21–L24 (1996).

    ADS  CAS  Google Scholar 

  17. Braun, R. Distribution and kinematics of neutral gas in M 31. Astrophys. J. 372, 54–66 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Maddalena, R. J. et al. The large system of molecular clouds in Orion and Monoceros. Astrophys. J. 303, 375–391 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Heyer, M. et al. the FCRAO CO survey of the Outer Galaxy. Astrophys. J. Suppl. 115, 241–258 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Garcıa-Burillo, S., Guélin, M. & Cernicharo, J. CO in M 51. I. Molecular spiral structure. Astron. Astrophys. 274, 123–147 (1993).

    ADS  Google Scholar 

  21. Emerson, D. T. & Gräve, R. The reduction of scanning noise in raster scanned data. Astron. Astrophys. 190, 353–358 (1988).

    ADS  Google Scholar 

  22. Hoernes, P. Thesis, Univ. Bonn (1997).

Download references

Acknowledgements

We thank the IRAM Granada staff, particularly A. Sievers and W. Brunswig, and P.Hoenes from MPIfR for their important role in developing the ‘on-the-fly’ observation and data-reduction procedures. We also thank E. Brinks and N. Devereux for making available their H Iand Hα data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Neininger or M. Guélin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neininger, N., Guélin, M., Ungerechts, H. et al. Carbon monoxide emission as a precise tracer of molecular gas in the Andromeda galaxy. Nature 395, 871–873 (1998). https://doi.org/10.1038/27612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27612

  • Springer Nature Limited

Navigation