Skip to main content
Log in

Intact cerebral ventricle as a site for tissue transplantation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

TRANSPLANTATION of nervous tissue into the brain as a means of investigating both regeneration of the central nervous system (CNS) and graft viability has long been attempted1–3. Typical methods of transplantation involve surgical removal of brain tissue in order to accommodate grafts or the direct insertion of grafts into the brain substance4–7. Our approach differs from previous studies in avoiding mechanical damage to the brain surface or parenchyma. Thus, the regenerative capacity of the transplant and its interactions with intact brain surfaces, blood vessels and parenchyma can be studied without complication by appreciable scar formation or inflammatory response8. We report here the survival of allografted mature superior cervical ganglion (SCG) fragments into the intact IV ventricle of young rats. The transplanted autonomic fragments, initially without any afferent, efferent or vascular connections, regenerate vigorously as an in vivo culture within the cere-brospinal fluid (CSF). The undamaged IV ventricle provides a favourable site to study competitive interactions between brain and tissue grafts. We have found that the pattern of cell migration in developing cerebellum may be altered, so that cells of the external granular layer (EGL) and areas of maturing granular and molecular neuropil may migrate into the SCG graft. Entire laminae of EGL cells can be arrested at the cerebellar cortical surface even in 5-month-old rats. Normally, these cells complete their migration in the opposite direction, to their adult residence in the internal granule layer, before the end of the first post-natal month in the rat. This anomalous migration of developing CNS neurones through the limiting surface of the brain in response to a foreign tissue has not been previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ranson, S. W. J. comp. Neurol. 24, 547–558 (1914).

    Article  Google Scholar 

  2. LeGros Clark, W. E. J. Anat. 77, 20–42 (1942).

    CAS  Google Scholar 

  3. Clemente, C. D. Int. Rev. Neurobiol. 6, 257–302 (1964).

    Article  CAS  Google Scholar 

  4. Das, G. & Altman, J. Brain Res. 38, 233–249 (1972).

    Article  CAS  Google Scholar 

  5. Lund, R. & Hauschka, S. Science 193, 582–584 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Bjorklund, A., Stenevi, V. & Svendgaard, N. Nature 262, 787–790 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Bjorklund, A. & Stenevi, V. Brain Res. 138, 259 (1977).

    Article  CAS  Google Scholar 

  8. Konigsmark, B. & Sidman, R. J. Neuropath. exp. Neurol. 22, 643–676 (1963).

    Article  CAS  Google Scholar 

  9. Rosenstein, J. M. & Brightman, M. W. VIII Int. Cong. Neuropath., Washington, D. C. (1978).

  10. Bunge, M. J. Cell Biol. 56, 713–735 (1973).

    Article  CAS  Google Scholar 

  11. Rees, R., Bunge, M. & Bunge, R. J. Cell Biol. 68, 240–263 (1976).

    Article  CAS  Google Scholar 

  12. Rosenstein, J. M. & Brightman, M. W. Anat. Rec. 190, 524 (1978).

    Google Scholar 

  13. Levi-Montalcini, R. & Angletti, P. Physiol. Rev. 48, 534–569 (1968).

    Article  CAS  Google Scholar 

  14. Greene, L. Devl Biol. 58, 96–105 (1977).

    Article  CAS  Google Scholar 

  15. Burnham, P., Raiborn, C. & Varon, S. Proc. natn. Acad. Sci. U.S.A. 69, 3556–3560 (1972).

    Article  ADS  CAS  Google Scholar 

  16. Varon, S., Raiborn, C. & Norr, S. Exp. Cell Res. 88, 247–256 (1974).

    Article  CAS  Google Scholar 

  17. Hendry, I. Brain Res. 94, 87–97 (1975).

    Article  CAS  Google Scholar 

  18. Cowan, M. W. in Development and Aging in the Nervous System (eds Rockstein, M. & Sussman, M.) 19–41 (Academic, New York, 1973).

    Book  Google Scholar 

  19. Purves, D. J. Physiol., Lond. 252, 429–463 (1975).

    Article  CAS  Google Scholar 

  20. Dibner, M., Mytilineou, C. & Black, I. Brain Res. 123, 301–310 (1977).

    Article  CAS  Google Scholar 

  21. Aguayo, A., Epps, J., Charron, L. & Bray, G. Brain Res. 104, 1–20 (1976).

    Article  CAS  Google Scholar 

  22. Rakic, P. & Sidman, R. Proc. natn. Acad. Sci. U.S.A. 70, 240–244 (1973).

    Article  ADS  CAS  Google Scholar 

  23. Shimada, M. & Langman, J. Am. J. Anat. 129, 247–260 (1970).

    Article  CAS  Google Scholar 

  24. Ebels, E. ACTA Neuropath. 21, 117–127 (1972).

    Article  CAS  Google Scholar 

  25. Stoughton, R. L., del Cerro, M., Walker, J. R. & Swarz, J. R. Brain Res. 148, 15–29 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ROSENSTEIN, J., BRIGHTMAN, M. Intact cerebral ventricle as a site for tissue transplantation. Nature 276, 83–85 (1978). https://doi.org/10.1038/276083a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276083a0

  • Springer Nature Limited

This article is cited by

Navigation