Skip to main content
Log in

Individual Peculiarities of the Development and Differentiation of Embryonic Neocortex Transplants in Intact Adult Mouse Brain

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied individual peculiarities of the development and differentiation of allogeneic transplants of neocortical cells isolated from embryos at different stages of development in intact brain of adult mice. Despite standard transplantation technique, intraparenchymal grafts considerably varied in size, morphology, and structural organization. The cells in the transplants developing inside the brain ventricles of the recipient formed histotypical structures resembling organoids. Transplants of each age group (12.5, 14.5, and 19.5 days) demonstrated individual peculiarities of cell migration, differentiation, and fiber growth. Only from cells of 12.5-day transplants formed spiny pyramidal neurons typical of V layer of the cerebral cortex. Differentiation of catecholaminergic neurons untypical of brain cortex was observed only in 14.5-day transplants. In few transplants of each age group, extensive cell migration from the transplant was observed. In some transplants, dense astrocyte accumulation was seen. In all cases (n=52), the response of the recipient’s glia to the transplant was observed, but formation of an extensive glial barrier was noted only in one case. Our findings suggest that the entire range of the results determined by individual peculiarities of the transplant growth and recipient’s response should be thoroughly realized when introducing the methods of neurotransplantation into regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behrstock S, Ebert AD, Klein S, Schmitt M, Moore JM, Svendsen CN. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF. Cell. Transplant. 2008;17(7):753-762.

    Article  Google Scholar 

  2. Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol. Cell. Neurosci. 2003;24(3):623-631.

    Article  CAS  Google Scholar 

  3. Blaya MO, Tsoulfas P, Bramlett HM, Dietrich WD. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp. Neurol. 2015;264:67-81.

    Article  CAS  Google Scholar 

  4. Cusulin C, Monni E, Ahlenius H, Wood J, Brune JC, Lindvall O, Kokaia Z. Embryonic stem cell-derived neural stem cells fuse with microglia and mature neurons. Stem Cells. 2012;30(12):2657-2671.

    Article  CAS  Google Scholar 

  5. Dunnett SB, Bjorklund A. Basic transplantation methods in rodent brain. Neural Transplantation Methods. Dunnett SB, Boulton AA, Baker GB, eds. Totowa, 2010. P. 133-148.

  6. Einstein O, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Polyzoidou E, Lavon I, Milonas I, Karussis D, Abramsky O, Ben-Hur T. Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis. Exp. Neurol. 2006;198(2):275-284.

    Article  CAS  Google Scholar 

  7. Gaillard A, Jaber M. Is the outgrowth of transplant-derived axons guided by host astrocytes and myelin loss? Cell Adh. Migr. 2007;1(4):161-164.

    Article  Google Scholar 

  8. Gaillard A, Nasarre C, Roger M. Early (E12) cortical progenitors can change their fate upon heterotopic transplantation. Eur. J. Neurosci. 2003;17(7):1375-1383.

    Article  Google Scholar 

  9. Gaillard A, Prestoz L, Dumartin B, Cantereau A, Morel F, Roger M, Jaber M. Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons. Nat. Neurosci. 2007;10(10):1294-1299.

    Article  CAS  Google Scholar 

  10. Huebner EA, Strittmatter SM. Axon regeneration in the peripheral and central nervous systems. Results Probl. Cell Differ. 2009;48:339-351.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Isenmann S, Brandner S, Sure U, Aguzzi A. Telencephalic transplants in mice: characterization of growth and differentiation patterns. Neuropathol. Appl. Neurobiol. 1996;22(2):108-117.

    Article  CAS  Google Scholar 

  12. Karbanová J, Mokrý J, Kotingová L. Neural stem cells transplanted into intact brains as neurospheres form solid grafts composed of neurons, astrocytes and oligodendrocyte precursors. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2004;148(2):217-220.

    Article  Google Scholar 

  13. Kunze A, Achilles A, Keiner S, Witte OW, Redecker C. Two distinct populations of doublecortin-positive cells in the perilesional zone of cortical infarcts. BMC Neurosci. 2015;16:20. doi: https://doi.org/10.1186/s12868-015-0160-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J. Clin. Invest. 2010;120(1):29-40.

    Article  CAS  Google Scholar 

  15. Ma S, Kwon HJ, Huang Z. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLoS One. 2012;7(10):e48001. doi: https://doi.org/10.1371/journal.pone.0048001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Magavi SS, Lois C. Transplanted neurons form both normal and ectopic projections in the adult brain. Dev. Neurobiol. 2008;68(14):1527-1537.

    Article  Google Scholar 

  17. Michelsen KA, Acosta-Verdugo S, Benoit-Marand M, Espuny-Camacho I, Gaspard N, Saha B, Gaillard A, Vanderhaeghen P. Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron. 2015;85(5):982-997.

    Article  CAS  Google Scholar 

  18. Nishino H, Hida H, Takei N, Kumazaki M, Nakajima K, Baba H. Mesencephalic neural stem (progenitor) cells develop to dopaminergic neurons more strongly in dopamine-depleted striatum than in intact striatum. Exp. Neurol. 2000;164(1):209-214.

    Article  CAS  Google Scholar 

  19. Oertel J, Samii M, Walter GF. Fetal allogeneic dopaminergic cell suspension grafts in the ventricular system of the rat: characterization of transplant morphology and graft-host interactions. Acta Neuropathol. 2004;107(5):421-427.

    Article  CAS  Google Scholar 

  20. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. “Green mice” as a source of ubiquitous green cells. FEBS Lett. 1997;407(3):313-319.

    Article  CAS  Google Scholar 

  21. Park JK, Joh TH, Ebner FF. Tyrosine hydroxylase is expressed by neocortical neurons after transplantation. Proc. Natl Acad. Sci. USA. 1986;83(19):7495-7498.

    Article  CAS  Google Scholar 

  22. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi A.L, Martino G. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422:688-694.

    Article  CAS  Google Scholar 

  23. Pluchino S, Zanotti L, Brini E, Ferrari S, Martino G. Regeneration and repair in multiple sclerosis: the role of cell transplantation. Neurosci. Lett. 2009;456(3):101-106.

    Article  CAS  Google Scholar 

  24. Raposo C, Schwartz M. Glial scar and immune cell involvement in tissue remodeling and repair following acute CNS injuries. Glia. 2014;62(11):1895-1904.

    Article  Google Scholar 

  25. Shetty AK, Hattiangady B. Grafted subventricular zone neural stem cells display robust engraftment and similar differentiation properties and form new neurogenic niches in the young and aged hippocampus. Stem Cells Transl. Med. 2016;5(9):1204-1215.

    Article  CAS  Google Scholar 

  26. Sukhinich KK, Kosykh AV, Aleksandrova MA. Differentiation and cell-cell interactions of neural progenitor cells transplanted into intact adult brain. Bull. Exp. Biol. Med. 2015;160(1):115-122.

    Article  CAS  Google Scholar 

  27. Thompson LH, Björklund A. Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells. Neurobiol. Dis. 2015;79:28-40.

    Article  CAS  Google Scholar 

  28. Unal-Cevik I, Kilinç M, Gürsoy-Ozdemir Y, Gurer G, Dalkara T. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Res. 2004;1015(1-2):169-174.

    Article  CAS  Google Scholar 

  29. Venugopalan P, Wang Y, Nguyen T, Huang A, Muller KJ, Goldberg JL. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 2016;7. ID 10472. doi: https://doi.org/10.1038/ncomms10472.

  30. Wuttke TV, Markopoulos F, Padmanabhan H, Wheeler AP, Murthy VN, Macklis JD. Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nat. Neurosci. 2018;21(4):517-529.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Sukhinich.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 164-175, September, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhinich, K.K., Aleksandrova, M.A. Individual Peculiarities of the Development and Differentiation of Embryonic Neocortex Transplants in Intact Adult Mouse Brain. Bull Exp Biol Med 166, 141–150 (2018). https://doi.org/10.1007/s10517-018-4303-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4303-7

Key Words

Navigation