Skip to main content
Log in

Evidence for dominant mutations reducing HGPRT activity

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HERITABLE variants (which we shall refer to as mutants) occur in mammalian cells with high frequency, despite the apparently recessive phenotype of the variant and despite the diploid or heteroploid nature of the cell line. For example, the frequency of 8-azaguanine (8AG)-resistant mutants1 or of hypoxanthine–guanine phosphoribosyl transferase (HGPRT) negative mutants2 does not seem to decrease as an exponential function of the increase in ploidy. Explanations for this high frequency have ranged from the presence of regulatory mutations1, to mechanisms such as non-disjunction or somatic recombination2,3. If the phenotype was due to a dominant mutation, the high frequency of mutants would be expected. We explore this hypothesis here and present two experimental criteria for establishing the presence of dominant mutations which reduce enzyme activity: we restore activity by frameshift mutations or we transfer the mutant phenotype by fusing irradiated mutants with wild-type cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, M. J. cell. Physiol. 78, 177–184 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Chasin, L. A. J. cell. Physiol. 82, 299–308 (1973).

    Article  CAS  Google Scholar 

  3. Sharp, J. D., Capecchi, N. E. & Capecchi, M. R. Proc. natn. Acad. Sci. U.S.A. 70, 3145–3149 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Wahl, G. M., Hughes, S. H. & Capecchi, M. R. J. cell. Physiol. 85, 307–320 (1975).

    Article  CAS  Google Scholar 

  5. Hartman, P. E., Levine, K., Hartman, Z. & Berger, H. Science 172, 1058–1060 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Clive, D., Flamm, W. G. & Machesko, M. R. Mutat. Res. 14, 262–264 (1972).

    Article  CAS  Google Scholar 

  7. Hori, T. & Lark, K. G. J. molec. Biol. 77, 391–404 (1973).

    Article  CAS  Google Scholar 

  8. Goss, S. J. & Harris, H. Nature 255, 680–684 (1975); J. Cell Sci. 25, 17–37 (1977); 25, 39–57 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Hughes, S. H., Wahl, G. M. & Capecchi, M. R. J. biol. Chem. 250, 120–126 (1975).

    CAS  PubMed  Google Scholar 

  10. Chasin, L. A. & Urlaub, G. Som. Cell Genet. 2, 453–467 (1976).

    Article  CAS  Google Scholar 

  11. Milman, G., Lee, E., Ghangas, G. S., McLaughlin, J. R. & George, M., Jr Proc. natn. Acad. Sci. U.S.A. 73, 4589–4593 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KADOURI, A., KUNCE, J. & LARK, K. Evidence for dominant mutations reducing HGPRT activity. Nature 274, 256–259 (1978). https://doi.org/10.1038/274256a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274256a0

  • Springer Nature Limited

This article is cited by

Navigation