Skip to main content
Log in

Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE hippocampus is particularly vulnerable to a variety of conditions, such as anoxia, status epilepticus and senile dementia, in which central neurones are lost1,2. Most commonly, the lesion involves only the Sommer sector (h1) and the endfolium (h3–h5), sparing area h2, the fascia dentata and most regions outside the hippocampal formation. The consequences for hippocampal connections are unknown. Studies on the rat hippocampus suggest that connections made by the affected neurones could be replaced by axons of other neurones which project to the same areas3,4. These anomalous synapses might either compensate in part for the loss of cells or contribute to whatever functional deficits may derive from the lesion. Since a good deal is known about afferent and efferent hippocampal connections in the rat, this animal might serve as a model for studies of hippocampal damage. However, the selective pathology seen clinically cannot be reproduced by conventional lesioning techniques. Ideally, one would like to use a toxin relatively specific for the neurones in question. Kainic acid, a potent excitatory analogue of glutamic acid5–7, has been used to destroy neurones in the arcuate nucleus8 and striatum,9–11 while sparing fibres which pass to or through these regions. Previous workers have also briefly noted lesions in the hippocampus,8,11 but these were not described. Accordingly, we injected kainic acid intraventricularly into the rat brain and studied its effect on hippocampal neurones. We now report the unusual sensitivity of CA3–CA4, and to a lesser extent CA1, pyramidal cells to this agent. Our results suggest that kainic acid lesions can provide a model of hippocampal damage in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minckler, J. (ed.) Pathology of the Nervous System 2, (McGrawHill, New York, 1971).

  2. Blackwood, W. & Corsellis, J. A. N. (eds) Greenfield's Neuropathology (Arnold, London, 1976).

  3. Lynch, G. & Cotman, C. W. in The Hippocampus 1, (eds Isaacson, R. L. &Pribram, K. H.) 123–155 (Plenum, New York, 1975).

    Book  Google Scholar 

  4. Cotman, C. W. & Lynch, G. S. in Neuronal Recognition (ed. Barondes, S. H.) 69–108 (Plenum, New York, 1976).

    Book  Google Scholar 

  5. Shinozaki, H. & Konishi, S. Brain Res. 24, 368–371 (1970).

    Article  CAS  Google Scholar 

  6. Johnston, G. A. R., Curtis, D. R., Davies, J. & McCulloch, R. M. Nature 248, 804–805 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Biscoe, T. J., Evans, R. H., Headley, P. M., Martin, M. & Watkins, J. C. Nature 255, 166–167 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Olney, J. W., Rhee, V. & Ho, O. L. Brain Res. 77, 507–512 (1974).

    Article  CAS  Google Scholar 

  9. Coyle, J. T., Schwarcz, R. Nature 263, 244–246 (1976).

    Article  ADS  CAS  Google Scholar 

  10. McGeer, E. G. & McGeer, P. L. Nature 263, 517–519 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Schwarcz, R. & Coyle, J. T. Brain Res. 127, 235–249 (1977).

    Article  CAS  Google Scholar 

  12. Elliott, K. A. C. in Handbook of Neurochemistry 2 (ed. Lajtha, A.) 103–114 (Vol. 2 Plenum, New York 1969).

    Book  Google Scholar 

  13. Hjorth-Simonsen, A. Stain Tech. 45, 199–204 (1970).

    Article  CAS  Google Scholar 

  14. Hattori, T. & McGeer, E. G. Brain Res. 129, 174–180 (1977).

    Article  CAS  Google Scholar 

  15. Olney, J. W., Sharpe, L. G. & de Gubareff, T. Neurosci. Abst. 1, 371 (1975).

    Google Scholar 

  16. Herkenham, M. Neurosci. Abst. 2, 387 (1976).

    Google Scholar 

  17. Meldrum, B. S. & Brierley, J. B. Brain Res. 48, 361–365 (1972).

    Article  CAS  Google Scholar 

  18. Meldrum, B. S. & Brierley, J. B. Archs Neurol. 28, 10–17 (1973).

    Article  CAS  Google Scholar 

  19. Meldrum, B. S., Horton, R. W. & Brierley, J. B. Brain 97, 407–418 (1974).

    Article  CAS  Google Scholar 

  20. Purpura, D. P. & Gonzalez-Monteagudo, O. J. Neuropath. exp. Neurol. 19, 421–432 (1960).

    Article  CAS  Google Scholar 

  21. Nadler, J. V., Vaca, K. W., White, W. F., Lynch, G. S. & Cotman, C. W. Nature 260, 538–540 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Storm-Mathisen, J. Brain Res. 120, 379–386 (1977).

    Article  CAS  Google Scholar 

  23. White, W. F., Nadler, J. V., Hamberger, A., Cotman, C. W. & Cummins, J. T. Nature 270, 356–357 (1978).

    Article  ADS  Google Scholar 

  24. Lorente de Nó, R. J. Psychol. Neurol., Lpz. 46, 113–177 (1934).

    Google Scholar 

  25. Shute, C. C. D. & Lewis, P. R. Nature 199, 1160–1164 (1963).

    Article  ADS  CAS  Google Scholar 

  26. Shute, C. C. D. & Lewis, P. R. Z. Zellforsch. 69, 334–343 (1966).

    Article  CAS  Google Scholar 

  27. Haug, F.-M. S. Z. Anat. Entwickl.-Gesch. 145, 1–27 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

NADLER, J., PERRY, B. & COTMAN, C. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271, 676–677 (1978). https://doi.org/10.1038/271676a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/271676a0

  • Springer Nature Limited

This article is cited by

Navigation