Skip to main content
Log in

Alternative hypothesis for the origin of CCF xenon

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

I SUGGEST that the anomalous xenon isotopic composition known as carbonaceous chondrite fission (CCF) xenon is not caused by fission, but is the direct result of a modified r-process nucleosynthesis which produces an abundance peak at Z = 54 and the magic neutron number N = 82. I further propose that the xenon so produced (‘R xenon’) was trapped in dust grains, which were subsequently incorporated in the solar system with minimal degassing. This hypothesis also provides a natural explanation for the intimate association between R xenon and a newly discovered xenon component in primitive meteorites1,2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phinney, D. L., Meteoritics, 4 (1973).

  2. Manuel, O. K., Henneke, E. W., and Sabu, D. D., Nature, 240, 99 (1972).

    CAS  ADS  Google Scholar 

  3. Alexander, E. C. Jr, Lewis, R. S., Reynolds, J. H., and Michel, M. C., Science, 172, 837 (1971).

    Article  CAS  ADS  Google Scholar 

  4. Reynolds, J. H., and Turner, G., J. geophys. Res., 69, 3263 (1964).

    Article  CAS  ADS  Google Scholar 

  5. Hoffman, D. C., and Hoffman, M. M., A. Rev. nucl. Sci., 24 (in the press).

  6. Anders, E., and Heymann, D., Science, 164, 821 (1969).

    Article  CAS  ADS  Google Scholar 

  7. Rao, M. N., Nucl. Phys., A, 140, 69 (1970).

    Article  CAS  ADS  Google Scholar 

  8. Takaota, N., Mass Spectroscopy, 20, 287 (1972).

    Article  Google Scholar 

  9. Phinney, D. L., thesis, Univ. Minnesota (1971).

  10. Pepin, R. O. in Origin and Distribution of the Elements, 379 (Pergamon, Oxford, 1968).

    Book  Google Scholar 

  11. Eugster, O., Eberhardt, P., and Geiss, J., Earth planet Sci. Lett., 1, 99 (1966).

    Article  ADS  Google Scholar 

  12. Marti, K., Meteoritics, 5, 208 (1970).

    ADS  Google Scholar 

  13. Sabu, D. D., Henneke, E. W., and Manuel, O. K., Nature, 251, 21 (1974).

    Article  CAS  ADS  Google Scholar 

  14. Black, D. C., and Pepin, R. O., Earth planet. Sci. Lett., 6, 395 (1969).

    Article  CAS  ADS  Google Scholar 

  15. Black, D. C., Geochim. cosmochim. Acta, 36, 377 (1972).

    Article  CAS  ADS  Google Scholar 

  16. Clayton, R. N., Grossman, L., and Mayeda, T. K., Science, 182, 485 (1973).

    Article  CAS  ADS  Google Scholar 

  17. Gray, C. M., and Compston, W., Nature, 251, 495 (1974).

    Article  CAS  ADS  Google Scholar 

  18. Lee, T., and Papanastassiou, D. A., Geophys. Res. Lett., 1, 227 (1974).

    Article  ADS  Google Scholar 

  19. Cameron, A. G. W., and Pine, M. R., Icarus, 18, 377 (1973).

    Article  ADS  Google Scholar 

  20. Cameron, A. G. W., Space Sci. Rev., 15, 121 (1973).

    Article  CAS  ADS  Google Scholar 

  21. Hoyle, F., and Fowler, W. A., Nature, 241, 384 (1973).

    Article  CAS  ADS  Google Scholar 

  22. Black, D. C., in On the Origin of the Solar System, 236 (CNRS, Paris, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BLACK, D. Alternative hypothesis for the origin of CCF xenon. Nature 253, 417–419 (1975). https://doi.org/10.1038/253417a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/253417a0

  • Springer Nature Limited

This article is cited by

Navigation