Skip to main content
Log in

Allende Meteorite Carbonaceous Phase: Intractable Nature and Scanning Electron Morphology

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

METEORITES, being solar nebula condensates1, should carry information on the processes which led to formation of the planets. Within this context Green, Radcliffe and Heuer2 studied 1 µm thick foils of the Allende C-3 chondrite by means of high voltage transmission electron microscopy (TEM). Its chondrules (small silicate spheres) showed features which suggested that they were older than the microcrystalline matrix which alone contained carbon. If the matrix crystallized directly from the circumsolar plasma as virgin planetary material3 further study of its carbon phase would be of interest because little is known of the nature of the insoluble carbonaceous “polymers” of meteorites4. The Allende chondrite contains about 0.3% carbon of which 100 p.p.m., extractable by organic solvents, has been extensively studied5. The origin of this organic matter is an extremely controversial subject6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anders, E., Ann. Rev. Astron. Astrophys., 9, 1 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Green, H. W., Radcliffe, S. V., and Heuer, A. H., Science, 172, 936 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Arrhenius, G., and Alfven, H., Earth Planetary Sci. Lett., 10, 253 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Hayes, J. M., Geochim. Cosmochim. Acta, 31, 1395 (1967); Vdovykin, G. P., “Carbonaceous Matter in Meteorites (Organic Compounds, Diamonds, Graphite)” (Nauka Press, Moscow, 1967); NASA Technical Translation TT F-582, 216, Washington, 1970, pp. 216–222.

    Article  ADS  CAS  Google Scholar 

  5. Simmonds, P. G., Bauman, A. J., Bollin, E. M., Gelpi, E., and Oro, J., Proc. US Nat. Acad. Sci., 64, 1027 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Studier, M. H., Hayatsu, R., and Anders, E., Geochim. Cosmochim. Acta, 36, 189 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Johari, Om, Research/Development, 22, 12 (1971).

    Google Scholar 

  8. Irving, S. M., Solid State Tech., 47, June 1971.

  9. Gluskoter, H. J., Fuel, 44, 285 (1965).

    CAS  Google Scholar 

  10. Greer, R. T., Proc. Third Ann. Scanning Electron Microscope Sympos., Chicago 1970, 379 (IIT Research Institute, Chicago, 1970).

    Google Scholar 

  11. Greer, R. T., Nature, 224, 1199 (1969).

    Article  ADS  CAS  Google Scholar 

  12. Zeller, E. J., and Dreschhoff, G., in Millmann, P. M., Meteorite Research (D. Reidel, Dordrecht, Holland, 1969).

    Google Scholar 

  13. Rank, D. M., Townes, C. H., and Welch, W. J., Science, 174, 1083 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Donn, B., Wickramasingh, N. C., Hudson, J. P., and Stecher, T. P., Astrophys. J. Lett., 157, L 125 (1969).

    Article  Google Scholar 

  15. Eugster, J., Aerospace Med., 36, 834 (1965).

    CAS  PubMed  Google Scholar 

  16. March, H., Dachille, F., Melvin, J., and Walker, P. L., Carbon, 9, 159 (1971).

    Article  Google Scholar 

  17. Robertson, S. D., Carbon, 8, 365 (1970).

    Article  CAS  Google Scholar 

  18. Eck, R. V., Lippincott, E. R., Dayhoff, M. O., and Pratt, Y. T., Science, 153, 628 (1966).

    Article  ADS  CAS  Google Scholar 

  19. Ruff, O., and Bretschneider, O., Z. Anorg. Allgem. Chem., 217, 1 (1934).

    Article  CAS  Google Scholar 

  20. Krishnaswami, S., Lal, D., Prabhu, N., and Tamhane, A. S., Science, 174, 287 (1971).

    Article  ADS  CAS  Google Scholar 

  21. Studier, M. H., Hayatsu, R., and Anders, E., Science, 149, 1455 (1965).

    Article  ADS  CAS  Google Scholar 

  22. Smale, D., Minerals Sci. Eng., 18 April, 1970.

  23. Allan, G. G., Johnson, P. G., Lai, Y-z., and Sarkanen, K. V., Chemy. Indy., 127, January 23, 1971.

  24. Warf, J. C., and Gutman, V., J. Inorg. Nucl. Chem., 33, 1583 (1971).

    Article  CAS  Google Scholar 

  25. Oberlin, M., and Mering, J., Carbon, 1, 471 (1964).

    Article  CAS  Google Scholar 

  26. Muenow, D. W., Steck, S. J., and Margrave, J. L., Geochim. Cosmochim. Acta, 35, 1047 (1971).

    Article  ADS  CAS  Google Scholar 

  27. Hayes, J. M., and Biemann, K., Geochim. Cosmochim. Acta, 32, 239 (1968).

    Article  ADS  CAS  Google Scholar 

  28. Johnson, B. B., and Cairns, T., Anal. Chem., 44, 24A (1972).

    Article  Google Scholar 

  29. Wachi, F. M., and Gilmartin, D. E., Carbon, 8, 141 (1970).

    Article  CAS  Google Scholar 

  30. Hoering, T. C., and Abelson, P. H., Carnegie Inst. Geophys. Lab. Yearbook, 64, 218.

  31. Storch, H. H., Golumbic, N., and Anderson, R. B., The Fischer-Tropsch and Related Syntheses (John Wiley and Sons, New York, 1952).

    Google Scholar 

  32. Carr, M. H., Geochim. Cosmochim. Acta, 34, 689 (1970).

    Article  ADS  CAS  Google Scholar 

  33. Tamaru, K., American Scientist, 60, 474 (1972).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAUMAN, A., DEVANEY, J. & BOLLIN, E. Allende Meteorite Carbonaceous Phase: Intractable Nature and Scanning Electron Morphology. Nature 241, 264–267 (1973). https://doi.org/10.1038/241264b0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/241264b0

  • Springer Nature Limited

This article is cited by

Navigation