Skip to main content
Log in

Carbonaceous-chondrite inclusions in the Kapoeta achondritic meteorite studied by Mössbauer spectroscopy

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Kapoeta is an achondrite meteorite containing mm-sized carbonaceous-chondrite inclusions that are thought to have been incorporated into its parent body by carbonaceous-chondrite impactors (mainly CM “Mighei-type” material). Two different samples (A and B) of the Kapoeta carbonaceous-chondrite materials are studied by Mössbauer spectroscopy at room temperature. The Mössbauer spectra are fitted with a combination of Fe2+ and Fe3+ quadrupole doublets using a Voigt-based function. The spectrum of sample A shows two Fe2+ doublets and one Fe3+ doublet, with Fe3+ accounting for 64% of the total spectral area, and are ascribed to hydrated phyllosilicates. Sample-B spectrum, on the other hand, shows three doublets that are due to Fe2+ only, and are attributed mainly to amorphous silicates (predominantly dehydrated amorphous phyllosilicates) and presence of small amounts of olivine. The results are compared with published Mössbauer data on carbonaceous chondrites, and discussed in relation to aqueous alteration that occurred in their parent bodies and the thermal history the Kapoeta meteorite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brearly, A.J., Jones, R.H.: Chondritic Meteorites. In: Papike, J. (ed.) Reviews in Mineralogy: Planetary Materials, vol. 36, pp. 3-1–3-398. Washington, D.C., Mineralogical Society of America (1998)

    Google Scholar 

  2. Fujiya, W., Sugiura, N., Hotta, H., Ichimura, K., Sano, Y.: Evidence for the late formation of hydrous asteroids from young meteoritic carbonates. Nat. Commun. 3, 627 (2012)

    Article  ADS  Google Scholar 

  3. Zolensky, M.E., Weisberg, M.K., Buchanan, P.C., Mittlefehldt, D.W.: Mineralogy of carbonaceous chondrite clasts in HED achondrites and the moon. Meteorit. Planet. Sci. 31, 518–537 (1996)

    Article  ADS  Google Scholar 

  4. Malysheva, T.V.: The kinetics or reduction of carbonaceous meteorites: Mössbauer study. Journal de Physique Colloques. 41(C1), C1-405–C1-406 (1980)

    Google Scholar 

  5. Hoffman, E., Seifu, D., Oliver, F.W.: Axtell and Allende: a Mössbauer spectroscopic study. Meteorit. Planet. Sci. 35, 431–434 (2000)

    Article  ADS  Google Scholar 

  6. Bland, P.A., Cressey, G., Menzies, O.N.: Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteorit. Planet. Sci. 39, 3–16 (2004)

    Article  ADS  Google Scholar 

  7. Tripathi, R.P., Dixit, A., Bhandari, N.: Characterization of Mukundpura carbonaceous chondrite. Curr. Sci. 114, 214–217 (2018)

    Article  Google Scholar 

  8. Sephton, M.A., Bland, P.A., Pillinger, C.T, Gilmour, I.: The preservation state of organic matter in meteorites from Antarctica. Meteorit. Planet. Sci. 39, 747–754 (2004)

  9. Fredriksson, K., Keil, K.: The light-dark structure in the Pantar and Kapoeta stone meteorites. Geochim. Cosmochim. Acta. 27, 717–739 (1963)

    Article  ADS  Google Scholar 

  10. Rancourt, D.G., Ping, J.Y.: Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl. Inst. Methods Phys. Res. B. 58, 85–97 (1991)

    Article  ADS  Google Scholar 

  11. Gismelseed, A.M., Khangi, F., Ibrahim, A., Yousif, A.A., Worthing, M.A., Rais, A., Elzain, M.E., Brooks, C.K., Sutherland, H.H.: Studies on AI Kidirate and Kapoeta meteorites. Hyperfine Interact. 91, 551–555 (1994)

    Article  ADS  Google Scholar 

  12. Abdu, Y.A., Hawthorne, F.C.: Mössbauer spectroscopy of pyroxene in the light-dark structure of the Kapoeta meteorite: implications for thermal history of the Kapoeta parent body. J. Phys. Conf. Ser. 869, 012096 (2017)

    Article  Google Scholar 

  13. Abdu, Y.A., Souza Azevedo, I., Stewart, S.J., López, A., Varela, M.E., Kurat, G., Scorzelli, R.B.: Mössbauer study of glasses in meteorites: the D’Orbigny angrite and Cachari eucrite. Hyperfine Interact. 166, 543–547 (2005)

    Article  ADS  Google Scholar 

  14. Abdu, Y.A., Hawthorne, F.C., Varela, M.E.: Infrared spectroscopy of carbonaceous-chondrite inclusions in the Kapoeta meteorite: discovery of nanodiamonds with new spectral features and astrophysical implications. Astrophys. J. Lett. 856, L9 (7 pp) (2018)

    Article  ADS  Google Scholar 

  15. King, A.J., Schofield, P.F., Russell, S.S.: Thermal alteration of CM carbonaceous chondrites: mineralogical changes and metamorphic temperatures. Geochim. Cosmochim. Acta. 298, 167–190 (2021)

    Article  ADS  Google Scholar 

  16. Rao, M.N., Garrison, D.H., Palma, R.L., Bogard, D.D.: Energetic proton irradiation history of the howardite parent body regolith and implications for ancient solar activity. Meteorit. Planet. Sci. 32, 531–543 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I am grateful to Frank C. Hawthorne for access to the Mössbauer spectroscopy facility in the Department of Geological Sciences, University of Manitoba. I acknowledge the support of the University of Sharjah grant number 2002143088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassir A. Abdu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2021), 5-10 September 2021, Brasov, Romania

Edited by Victor Kuncser

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdu, Y.A. Carbonaceous-chondrite inclusions in the Kapoeta achondritic meteorite studied by Mössbauer spectroscopy. Hyperfine Interact 242, 5 (2021). https://doi.org/10.1007/s10751-021-01729-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-021-01729-3

Keywords

Navigation