Skip to main content

Advertisement

Log in

Input–Output Relation of a Single Synapse

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE rate of secretion of a transmitter substance from a nerve terminal is known to be controlled by the membrane potential of the terminal. This has been shown, for example, at the neuromuscular junction by registering the frequency of miniature end-plate potentials when electric currents are sent through the motor nerve endings1. More recently, the use of tetrodotoxin2 has made it possible to eliminate initiation of impulses on either side of the junction, and so to study the graded relation between electrical “input” and “output” of a synapse, undisturbed by any regenerative potential change. With this method it has been found that brief pulses of depolarization, locally imposed on a motor nerve ending, elicit graded end-plate potentials the size of which can reach or even surpass that normally produced by a nerve impulse3. To obtain additional information, it was necessary to use a preparation in which direct measurements of the membrane potential can be made on both sides of the junction. The so-called giant synapse of the squid4 is suitable for this purpose: it is possible to insert microelectrodes in the pre- as well as post-synaptic nerve fibres of this preparation, close to their region of synaptic contact, and there is now good evidence that chemical transmission operates at this synapse5. The experiments reported here were made on the stellate ganglion of the squid Loligo vulgaris at the Naples Zoological Station. Similar work carried out at Woods Hole has been reported by Bloedel, Gage, Llinás and Quastel6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. del Castillo, J., and Katz, B., J. Physiol., 124, 586 (1954); Liley, A. W., J. Physiol., 134, 427 (1956); Katz, B., and Miledi, R., Proc. Roy. Soc., B, 161, 453 (1965).

    Article  CAS  Google Scholar 

  2. Narahashi, T., Moore, J. W., and Scott, W. R., J. Gen. Physiol., 47, 965 (1964).

    Article  CAS  Google Scholar 

  3. Katz, B., and Miledi, R., Nature, 207, 1097 (1965); J. Physiol., 185, 5P (1966); Proc. Roy. Soc., B (in the press).

    Article  ADS  CAS  Google Scholar 

  4. Young, J. Z., Phil. Trans. Roy. Soc., B, 229, 465 (1939).

    ADS  Google Scholar 

  5. Hagiwara, S., and Tasaki, I., J. Physiol., 143, 114 (1958). Takeuchi, A., and Takeuchi, N., J. Gen. Physiol., 45, 1181 (1962); Miledi, R., and Slater, C. R., J. Physiol., 184, 473 (1966).

    Article  CAS  Google Scholar 

  6. Bloedel, J., Gage, P. W., Llinás, R., and Quastel, D. M. J., Nature, 212, 49 (1966).

    Article  ADS  CAS  Google Scholar 

  7. Miledi, R., Nature (preceding communication).

  8. Katz, B., Proc. Roy. Soc., B, 155, 455 (1962).

    ADS  Google Scholar 

  9. Nakamura, Y., Nakajima, S., and Grundfest, H., J. Gen. Physiol., 48, 985 (1965).

    Article  CAS  Google Scholar 

  10. Armstrong, C. M., and Binstock, L., J. Gen. Physiol., 48, 859 (1965). Armstrong, C. M., Nature, 211, 322 (1966).

    Article  CAS  Google Scholar 

  11. Katz, B., and Miledi, R., Proc. Roy. Soc., B (in the press).

  12. Miledi, R., and Slater, C. R., J. Physiol., 184, 473 (1966); Katz, B., and Miledi, R., Proc. Roy. Soc., B, 161, 496 (1965).

    Article  CAS  Google Scholar 

  13. Hagiwara, S., and Tasaki, I., J. Physiol., 143, 114 (1958).

    Article  CAS  Google Scholar 

  14. Katz, B., and Miledi, R., Proc. Roy. Soc., B, 161, 453 (1965). Braun, M., and Schmidt, R. F., Pflügers Arch., 287, 56 (1966); Miledi, R., and Slater, C. R., J. Physiol., 184, 473 (1966).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KATZ, B., MILEDI, R. Input–Output Relation of a Single Synapse. Nature 212, 1242–1245 (1966). https://doi.org/10.1038/2121242a0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2121242a0

  • Springer Nature Limited

This article is cited by

Navigation