Skip to main content
Log in

Possible Role of Neuroglia

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IN a recent communication1, Hertz has postulated an impulse transmission system in which “potassium ions, which have been lost from one nerve cell during its activity, are transported through neuroglia cells to the outer surface of another nerve cell, which is then depolarized and stimulated; that is, a neuronal–neuroglial–neuronal impulse system”. For such a system to operate, the neuroglia cells should bear an appropriate topographical relationship to the nerve cells and should have a capacity for active ion transport; for the pathways to be selective there should be no significant diffusion of potassium ions between cells. Hertz has given good supporting evidence for the second premise, the capacity of glia cells for active ion transport; but the first and third require examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hertz, L., Nature, 206, 1091 (1965).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Scheibel, M. E., and Scheibel, A. B., in Biology of Neuroglia, edit. by Windle, W. F., 5 (Charles C. Thomas, Springfield, I11., 1958).

    Google Scholar 

  3. Peters, A., J. Anat. (Lond.), 96, 237 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Peters, A., and Palay, S. L., J. Anat. (Lond.), 99, 419 (1965).

    Google Scholar 

  5. Gray, E. G., in Electron Microscopy in Anatomy, edit. by Boyd, J. D., Johnson, F. R., and Lever, J. D., 54 (Edward Arnold, London, 1961).

    Google Scholar 

  6. Herndon, R. M., J. Cell Biol., 18, 167 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cummins, J., and Hydén, H., Biochim. Biophys. Acta, 60, 271 (1962).

    Article  CAS  PubMed  Google Scholar 

  8. Eccles, J. C., The Physiology of Synapses (Academic Press, New York, 1964).

    Book  Google Scholar 

  9. Frankenhaeuser, B., and Hodgkin, A. L., J. Physiol., 131, 141 (1956).

    Google Scholar 

  10. Horstmann, E., and Meves, H., Z. Zellforsch. mikroskop. Anat., 49, 569 (1959).

    Article  Google Scholar 

  11. Coggeshall, R. E., and Fawcett, D. W., J. Neurophysiol., 27, 229 (1964).

    Article  CAS  PubMed  Google Scholar 

  12. Nicholls, J. G., and Kuffler, S. W., J. Neurophysiol., 27, 645 (1964).

    Article  CAS  PubMed  Google Scholar 

  13. Cited by Pappenheimer, J. R., Physiol. Rev., 33, 387 (1953).

  14. Ochs, S., in International Review of Neurobiology edit. by Pfeiffer, C. C., and Smythies, J. R., 4, 1 (Academic Press, New York, 1962).

    Google Scholar 

  15. Van Harreveld, A., and Schadé, J. P., J. Cell. Comp. Physiol., 54, 65 (1959).

    Article  CAS  PubMed  Google Scholar 

  16. Hydén, H., and Egyházi, E., Proc. U.S. Nat. Acad. Sci., 48, 1366 (1962).

    Article  ADS  Google Scholar 

  17. Hydén, H., and Egyházi, E., Proc. U.S. Nat. Acad. Sci., 49, 618 (1963).

    Article  ADS  Google Scholar 

  18. Barondes, S. H., and Jarvik, M. E., J. Neurochem., 11, 187 (1964).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WENDELL-SMITH, C., BLUNT, M. Possible Role of Neuroglia. Nature 208, 600–601 (1965). https://doi.org/10.1038/208600a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/208600a0

  • Springer Nature Limited

Navigation