Skip to main content
Log in

Transforming Activity of Deoxyribonucleic Acid labelled with 5-Bromouracil

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Ephrati-Elizur and Zamenhof1 demonstrated that deoxyribonucleic acid from Bacillus subtilis grown in 5-bromouracil-supplemented media contained this analogue and retained its transforming activity. It thus became important to determine the specific transforming activity for purified fractions of each of the three molecular variants of deoxyribonucleic acid which can be extracted from organisms treated with 5-bromouracil : (1) unlabelled deoxyribonucleic acid molecules, and those in. which 5-bromouracil has been substituted for thymine in (2) one strand (‘unifilar’ labelling) or in (3) both strands (‘bifilar’ labelling) of the double helix. Two strains of Bacillus subtilis, wild type2 and uracil-requiring strain 265 (kindly supplied by Dr. R. Guthrie), served as the donors of deoxyribonucleic acid. These were first grown with aeration at 37° C. for 4 hr. in nutrient broth supplemented with thymidine (10 µgm. per ml.), and afterwards incubated for 2–3 generations in minimal broth2 containing 2–5 µgm. 5-fluorodeoxyuridine (serving as the thymidylic acid synthetase inhibitor3), 25 µgm. uridine (to suppress the conversion of 5-fLuorodeoxyuridine to 5-fluorouracil and 5-fluorouridine) and 50–250 µgm. 5-bromodeoxyuridine per ml. Under these conditions, similar to those first employed for Escherichia coli by Lorkiewicz and Szybalski4, the molar ratio of 5-bromouracil to 5-bromouracil + thymine (5-bromouracil substitution) in non-fractionated deoxyribonucleic acid varied from 35 to 61 per cent as assessed by Chromatographic determination5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ephrati-Elizur, E., and Zamenhof, S., Nature, 184, 472 (1959).

    Article  ADS  CAS  Google Scholar 

  2. Spizizen, J., Proc. U.S. Nat. Acad. Sci., 44, 1072 (1958); Fed. Proc., 18, 957 (1959).

    Article  ADS  CAS  Google Scholar 

  3. Harbers, E., Chaudhuri, N. K., and Heidelberger, C., J. Biol. Chem., 234, 1255 (1959). Cohen, S. S., Flaks, J. G., Barner, H. D., Loeb, M. R., and Lichtenstein, J., Proc. U.S. Nat. Acad. Sci., 44, 1004 (1958).

    CAS  PubMed  Google Scholar 

  4. Lorkiewicz, A., and Szybalski, W., Biochem. Biophys. Res. Comm., 2, 413 (1960).

    Article  CAS  Google Scholar 

  5. Djordjevic, B., and Szybalski, W., J. Exp. Med., 112, 509 (1960).

    Article  CAS  Google Scholar 

  6. Meselson, M., Stahl, F. W., and Vinograd, J., Proc. U.S. Nat. Acad. Sci., 43, 581 (1957). Meselson, M., and Stahl, F. W., ibid., 44, 671 (1958).

    Article  ADS  CAS  Google Scholar 

  7. Szybalski, W., Experientia, 16, 164 (1960).

    Article  CAS  Google Scholar 

  8. Szybalski, W., Opara-Kubinska, Z., and Ephrati-Elizur, E., Fed. Proc., 19, 306 (1960).

    Google Scholar 

  9. Eigner, J., Ph.D. thesis, Harvard University (1960).

  10. Marmur, J., and Doty, P., Nature, 183, 1427 (1959).

    Article  ADS  CAS  Google Scholar 

  11. Rolfe, R., and Meselson, M., Proc. U.S. Nat. Acad. Sci., 45, 1039 (1959).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SZYBALSKI, W., OPARA-KUBINSKA, Z., LORKIEWICZ, Z. et al. Transforming Activity of Deoxyribonucleic Acid labelled with 5-Bromouracil. Nature 188, 743–745 (1960). https://doi.org/10.1038/188743a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/188743a0

  • Springer Nature Limited

This article is cited by

Navigation