Skip to main content
Log in

Mechanism of Change in Permeability in Living Membranes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AN important feature of many excitable cells is that their permeability to ions and even to large molecules such as aldolase depends on the potential difference across the cellular membrane1. Thus, in nerve fibres a depolarization leads to a transitory increase in sodium permeability (P Na), often followed by a slower development of an increase in potassium permeability (P K). More recent studies of skeletal2,3 and cardiac (Carmeliet, E., and Weidmann, S., personal communication) muscle have demonstrated an opposite relation between P K and membrane potential that has been designated ‘anomalous rectification’. The purpose of this communication is to point out the possibility that the mechanism of these changes in permeability may be related to that recently proposed on the basis of monomolecular film studies of drugs known to affect the ionic permeability of natural membranes4–6. This mechanism is based on recently demonstrated physico-chemical principles and is susceptible to experimental test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shanes, A. M., Pharmacol. Rev., 10, 165 (1958).

    CAS  PubMed  Google Scholar 

  2. Katz, B., Arch. Sci. Physiol., 3, 285 (1949).

    CAS  Google Scholar 

  3. Hodgkin, A. L., and Horowicz, P., J. Physiol., 148, 127 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gershfeld, N. L., and Shanes, A. M., Science, 129, 1427 (1959).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Shanes, A. M., and Gershfeld, N. L., J. Gen. Physiol., 44, 345 (1960) see also J. Physiol., 148, 57P (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shanes, A. M., Pharmacol. Rev., 10, 59 (1958).

    CAS  PubMed  Google Scholar 

  7. Skou, J. C., Acta Pharm. Tox., 10, 281 (1954).

    Article  CAS  PubMed  Google Scholar 

  8. Skou, J. C., Acta Pharm Tox., 10, 325 (1954).

    Article  CAS  PubMed  Google Scholar 

  9. Skou, J. C., Biochim. Biophys. Acta, 30, 625 (1958).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, G. H., and Shaw, W. G., Chem. Rev., 57, 1049 (1957).

    Article  Google Scholar 

  11. Guastalla, J., in “Memorial des Services chimiques de I'Etat”, 41, 317 (1956–57).

    Google Scholar 

  12. Shanes, A. M., and Berman, M. D., J. Pharm. Exp. Therap., 125, 316 (1959).

    CAS  Google Scholar 

  13. Karreman, G., Cold Spring Harbor Symp. Quant. Biol., 17, 293 (1952).

    Article  CAS  PubMed  Google Scholar 

  14. Frankenhaeuser, B., and Hodgkin, A. L., J. Physiol., 137, 218 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huxley, A. F., Ann. N.Y. Acad. Sci., 81, 221 (1959).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Fatt, P., and Katz, B., J. Physiol., 120, 171 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koketsu, K., Cerf, J. A., and Nishi, S., J. Neurophysiol., 22, 693 (1959).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHANES, A. Mechanism of Change in Permeability in Living Membranes. Nature 188, 1209–1210 (1960). https://doi.org/10.1038/1881209a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/1881209a0

  • Springer Nature Limited

This article is cited by

Navigation