Skip to main content
Log in

Sodium Application Enhances DDT Transformation in a Long-Term Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Bioremediation is an economically attractive option to remediate soil contaminated with DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] and other organochlorine pesticides. However, lack of DDT bioavailability in soil presents one major obstacle to this technology particularly in soils that have been contaminated for long periods. In this work, sodium ion (Na+) was applied to a long-term DDT contaminated soil as Na+ is known to disperse clays, which would potentially release and/or expose physically protected DDT thereby enhancing DDT bioavailability. Sodium ion addition significantly increased dissolved organic carbon (DOC) levels, anaerobic bacterial numbers and the amount of DDT residues measured in soil solution. DDT transformation ranged from 95% (30—80 mg Na+ kg-1 soil) to 72% (no Na+ added) with the optimum level of DDT transformation occurring at 30 mg Na+ kg-1 soil. Higher Na+ levels repressed DDT transformation and this appeared to be related to lower DOC levels and flocculation of soils. The anaerobic incubation conditions employed (high water content) prevented DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] production and DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane] was the major breakdown product formed. Overall it appeared that Na+ has potential as a cheap and safe alternative to surfactants as a method for increasing DDT transformation in contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boul, H. L.: 1995, ‘DDT residues in the environment - A review with a New Zealand perspective’, N. Z. J. Agric. Res. 38, 257-277.

    CAS  Google Scholar 

  • Boulding, J. R.: 1995, Practical Handbook of Soil, Vadose Zone and Ground-Water Contamination: Assessment, Prevention, and Remediation, Lewis Publishers, London, pp. 948.

    Google Scholar 

  • Colborn, T. and Smolen, M. J.: 1996, ‘Epidemiological analysis of persistent organochlorine contaminants in cetaceans’, Rev. Environ. Contam. Toxicol. 146, 91-172.

    CAS  Google Scholar 

  • Castro, T. F. and Yoshida, T.: 1971, ‘Degradation of organochlorine insecticides in flooded soils in the Philippines’, J. Agric. Food Chem. 19, 1168-1170.

    Article  CAS  Google Scholar 

  • Ding, J.Y. and Wu, S.C.: 1997, ‘Transport of organochlorine pesticides in soil columns enhanced by dissolved organic carbon’, Water Sci. Technol. 25, 139-145.

    Google Scholar 

  • Fujimura, Y., Kuwatsuka, S. and Katayama, A.: 1996, ‘Bioavailability and biodegradation rate of DDT by Bacillus sp. B75 in the presence of dissolved humic substances’, Soil Sci. Plant Nutr. 42, 375-381.

    CAS  Google Scholar 

  • Garrison, A.W., Nzengung, V. A., Ellington, J. J., William, J. J., Rennels, D. and Wolfe, N. L.: 2000, ‘Phytodegradation of p, p'-DDT and the enantiomers of o, p'-DDT’, Environ. Sci. Technol. 34, 1663-1670.

    CAS  Google Scholar 

  • Hay, A. G. and Focht, D. D.: 1998, ‘Cometabolism of 1,1-dichloro-2,2-bis (4-chlorophenyl) ethylene by Pseudomonas acidorans M3GY grown on biphenyl’, Appl. Environ. Microbiol. 64, 2141- 2146.

    CAS  Google Scholar 

  • Hay, A. G. and Focht, D. D.: 2000, ‘Transformation 1,1-dichloro-2, 2-(4-chlorophenyl) ethane (DDD) by Ralstonia eutropha strain A5’, FEMS Microbiol. Ecol. 31, 249-253.

    CAS  Google Scholar 

  • Kantachote, D., Naidu, R., Singleton, I., McClure, N. and Harch, B. D.: 2001, ‘Resistance of microbial population in DDT-contaminated and uncontaminated soils’, Appl. Soil Ecol. 16, 85-90.

    Article  Google Scholar 

  • Kantachote, D.: 2001, ‘The use of microbial inoculants to enhance DDT degradation in contaminated soil’, Ph.D. Thesis, Department of Soil and Water, University of Adelaide, pp. 191.

  • Kaspar, H. F. and Tiedje, J. M.: 1994, ‘Anaerobic Bacteria and Process’, inWeaver et al. (eds), Methods of Soil Analysis. Part 2, Microbiological and Biochemical Properties, SSSA Book Series. No. 5, Wisconsin, pp. 223-243.

  • Kazman, Z., Shainberg, I. and Gal, M.: 1983, ‘Effect of low levels of exchangeable sodium and applied phosphogypsum on the infiltration rate of various soils’, Soil Sci. 135, 184-192.

    CAS  Google Scholar 

  • Kucklick, J. R. and Baker, J. F.: 1998, ‘Organochlorines in Lake Superior's food web’, Environ. Sci. Technol. 32, 1192-1198.

    Article  CAS  Google Scholar 

  • Lal, R. and Saxena, D. M.: 1982, ‘Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms’, Microbiol. Rev. 46, 95-127.

    CAS  Google Scholar 

  • Megharaj, M., Boul, L. H. and Thiele, J. H.: 1999, ‘Persistence and toxicity of DDT and its metabolites toward native algal populations and enzymatic activities in soil’, Biol. Fert. Soils 29, 130-134.

    Article  CAS  Google Scholar 

  • Megharaj, M., Kantachote, D., Singleton, I. and Naidu R.: 2000, ‘Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal metabolism of DDT’, Environ. Pollut. 109, 35-42.

    Article  CAS  Google Scholar 

  • Megharaj, M., Jovcic, A., Boul, H. L. and Thiele, J. H.: 1997, ‘Recalcitrance of 1,1-dichloro-2,2-bis (p-chlorophenyl) ethane (DDE) to cometabolic degradation by pure cultures of aerobic and anaerobic bacteria’, Arch. Environ. Contam. Toxicol. 33, 141-146.

    Article  CAS  Google Scholar 

  • Nadeau, L. J., Breen, M. F. and Sayler, G. S.: 1994, ‘Aerobic degradation of 1,1,1-trichloro-2,2-bis (4-Chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5’, Appl. Environ. Microbiol. 60, 51-55.

    CAS  Google Scholar 

  • Nelson, P. N. and Oades, J. M.: 1998, ‘Organic Matter, Sodicity, and Soil Structure’, in M. E. Sumner and R. Naidu (eds), Sodic Soils: Distribution, Properties, Management, and Environmental Consequences, Oxford, pp. 51-75.

  • Parr, J. F. and Smith, S.: 1974, Degradation of DDT in an everglades muck as affected by lime, ferrous ion, and anaerobiosis’, Soil Sci. 118, 45-52.

    CAS  Google Scholar 

  • Rayment, G. E. and Higginson, F. R.: 1992, Australian Laboratory Handbook of Soil and Water Chemicals Methods, Inkata Press, Sydney, pp. 330.

  • Rengasamy, P., Greene, R. S. B., Ford, G.W. and Mehanni, A. H.: 1984, ‘Identification of dispersive behaviour and the management of red-brown earths’, Aust. J. Soil Res. 22, 413-431.

    Article  CAS  Google Scholar 

  • White, R. E.: 1997, Principles and Practice of Soil Science: The Soil as a Natural Resource, 3rd ed., Blackwell Science Ltd., Carlton, pp. 348.

    Google Scholar 

  • Wood, M.: 1995, Environmental Soil Biology, 2nd ed., Chapman & Hall, Tokyo, pp. 150.

    Google Scholar 

  • You, G., Sayles, G. D., Kupferle, M. J., Kim, I. S. and Bishop, P. L.: 1996, ‘Anaerobic DDT biotransformation: Enhancement by application of surfactants and low oxidation reduction potential’, Chemosphere 32, 2269-2284.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kantachote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantachote, D., Singleton, I., Naidu, R. et al. Sodium Application Enhances DDT Transformation in a Long-Term Contaminated Soil. Water, Air, & Soil Pollution 154, 115–125 (2004). https://doi.org/10.1023/B:WATE.0000022934.70231.1a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000022934.70231.1a

Navigation