Skip to main content
Log in

Comparison of Exact Constants in Inequalities for Derivatives of Functions Defined on the Real Axis and a Circle

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We investigate the relationship between the constants K(R) and K(T), where \(K\left( G \right) = K_{k,r} \left( {G;q,p,s;\alpha } \right): = \mathop {\mathop {\sup }\limits_{x \in L_{p,s}^r \left( G \right)} }\limits_{x^{(r)} \ne 0} \frac{{\left\| {x^{\left( k \right)} } \right\|_{L_q \left( G \right)} }}{{\left\| x \right\|_{L_q \left( G \right)}^\alpha \left\| {x^{\left( r \right)} } \right\|_{L_s \left( G \right)}^{1 - \alpha } }}\) is the exact constant in the Kolmogorov inequality, R is the real axis, T is a unit circle,

$$L_{p,s}^r (G)$$

is the set of functions xL p(G) such that x (r)L s(G), q, p, s ∈ [1, ∞], k, rN, k < r, We prove that if

$$\frac{{r - k + {1 \mathord{\left/{\vphantom {1 q}} \right.\kern-\nulldelimiterspace} q} - {1 \mathord{\left/{\vphantom {1 s}} \right.\kern-\nulldelimiterspace} s}}}{{r + {1 \mathord{\left/{\vphantom {1 q}} \right.\kern-\nulldelimiterspace} q} - {1 \mathord{\left/{\vphantom {1 s}} \right.\kern-\nulldelimiterspace} s}}} = 1 - k/r$$

thenK(R) = K(T),but if

$$\begin{gathered}\frac{{r - k + {1 \mathord{\left/{\vphantom {1 q}} \right.\kern-\nulldelimiterspace} q} - {1 \mathord{\left/{\vphantom {1 s}} \right.\kern-\nulldelimiterspace} s}}}{{r + {1 \mathord{\left/{\vphantom {1 q}} \right.\kern-\nulldelimiterspace} q} - {1 \mathord{\left/{\vphantom {1 s}} \right.\kern-\nulldelimiterspace} s}}} < \hfill \\1 - k/r \hfill \\ \end{gathered} $$

thenK(R) ≤ K(T); moreover, the last inequality can be an equality as well as a strict inequality. As a corollary, we obtain new exact Kolmogorov-type inequalities on the real axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Kolmogorov, Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  2. V. M. Tikhomirov and G. G. Magaril-Il'yaev, “Inequalities for derivatives,” in: A. N. Kolmogorov, Selected Works. Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 387–390.

    Google Scholar 

  3. V. V. Arestov and V. N. Gabushin, “Best approximation of unbounded operators by bounded operators,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 11, 44–66 (1995).

    Google Scholar 

  4. V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems,” Usp. Mat. Nauk, 51, No. 6, 88–124 (1996).

    Google Scholar 

  5. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Inequalities of Kolmogorov type and some their applications in approximation theory,” Rend. Circ. Mat. Palermo, Ser. II, Suppl., 52, 223–237 (1998).

    Google Scholar 

  6. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On the exact inequalities of Kolmogorov type and some of their applications,” in: New Approaches in Nonlinear Analysis, Hadronic Press, Palm Harbor (1999), pp. 9–50.

    Google Scholar 

  7. V. F. Babenko, “ Investigations of Dnepropetrovsk mathematicians related to inequalities for derivatives of periodic functions and their applications,” Ukr. Mat. Zh., 52, No. 1, 9–29 (2000).

    Google Scholar 

  8. V. N. Gabushin, “Inequalities for the norms of a function and its derivatives in the metric of Lp,” Mat. Zametki, 1, No. 3, 291–298 (1967).

    Google Scholar 

  9. B. E. Klots, “Approximation of differentiable functions by functions of higher smoothness,” Mat. Zametki, 21, No. 1, 21–32 (1977).

    Google Scholar 

  10. S. Mandelbrojt, Séries Adhérentes, Régularisations des Suites, Applications [Russian translation], Inostrannaya Literatura, Moscow (1955).

    Google Scholar 

  11. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On additive inequalities for intermediate derivatives of functions given on a finite internal,” Ukr. Mat. Zh., 49, No. 5, 619–628 (1997).

    Google Scholar 

  12. L. V. Taikov, “Kolmogorov-type inequalities and best formulas of numerical differentiation,” Mat. Zametki, 4, No. 2, 223–238 (1967).

    Google Scholar 

  13. A. Yu. Shadrin, “Kolmogorov-type inequalities and estimates of spline interpolation for the periodic classes W m 2 ”, Mat. Zametki, 48, No. 4, 132–139 (1990).

    Google Scholar 

  14. V. V. Arestov, “On exact inequalities for the norms of functions and their derivatives,” Acta Sci. Math., 33, No. 3-4 (1972).

    Google Scholar 

  15. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Some exact Kolmogorov-type inequalities for periodic functions,” in: Fourier Series. Theory and Applications, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1998), pp. 30–42.

    Google Scholar 

  16. V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “On exact Kolmogorov-type inequalities in the case of low smoothness,” Dopov. Akad. Nauk Ukr., No. 6, 11–15 (1998).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.F., Kofanov, V.A. & Pichugov, S.A. Comparison of Exact Constants in Inequalities for Derivatives of Functions Defined on the Real Axis and a Circle. Ukrainian Mathematical Journal 55, 699–711 (2003). https://doi.org/10.1023/B:UKMA.0000010250.39603.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:UKMA.0000010250.39603.d4

Keywords

Navigation