Skip to main content
Log in

Use of Reaction Calorimetry in Thermal Risk Assessment Studies and Safe Design of Batch Reactions That Can Lead to a Runaway: Application on Hydrogen Peroxide

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Reaction calorimetry measurements have been performed and used for the calculation of the heat of reaction, the thermal mass of the reactor and for the development of a global kinetic model for the homogeneous catalytic decomposition of hydrogen peroxide, which is a commonly encountered unwanted reaction in numerous oxidation processes. The use of this model targets the assessment of the thermal risk associated with the runaway behaviour of this reaction at industrial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sempere, R. Nomen, J.L. Rodriguez and M. Papadaki, Chem. Eng. Process. 37 (1998) 33.

    Google Scholar 

  2. S.P. Waldram, Chem. Indus. Digest, (March 1993) 111.

  3. T.K. Wright and C.W. Butterworth, IChemE Symp. Ser.102 (1987) 85.

    Google Scholar 

  4. F. Stoessel, J. Loss Prevent. Process Ind., 6 (1993) 79.

    Google Scholar 

  5. J.L. Cronin, P.F. Nolan and J.A. Barton, IChemE Symp. Ser.102 (1987) 113.

    Google Scholar 

  6. P. Cardillo, J. Loss Prevent. Process Ind. 7 (1994) 33.

    Google Scholar 

  7. N. Gibson, R.L. Rogers and T.K. Wright, IChemE Symp. Ser. 102 (1987) 61.

    Google Scholar 

  8. P.F. Nolan, IChemE Symp. Ser. 115 (1989) 45.

    Google Scholar 

  9. K. Dixon-Jackson, IChemE Symp. Ser. 15 (1989) 65.

    Google Scholar 

  10. M.A. Alos, F. Strozzi and J.M. Zaldivar, Chem. Eng. Sci. 51 (1996) 3089.

    Google Scholar 

  11. P. Hugo, J. Steinbach and F. Stoessel, Chem. Eng. Sci. 43 (1988) 2147.

    Google Scholar 

  12. P. Hugo and J.A. Steinbach, Chem. Eng. Sci. 41 (1986) 1081.

    Google Scholar 

  13. J.J. Heiszwolf and J.M.H. Fortuin, Chem. Engi. Sci. 51 (1996) 3095.

    Google Scholar 

  14. R. Gygax, Chem. Eng. Sci. 43 (1988) 1759.

    Google Scholar 

  15. J.L. Gustin, J. Loss Prevent. Process Ind. 6 (1993) 275.

    Google Scholar 

  16. W.S. Schumb, C.N. Satterfield and R.L. Wentworth, American Chemical Society Monograph Series, Hydrogen Peroxide, Reinhold Publishing Corporation, New York, 1955.

    Google Scholar 

  17. J.L. Rodriguez-Miranda Diploma Thesis, Insitut Quimíc de Sarrià, Universidad Ramon Llull, Barcelona, 1997.

    Google Scholar 

  18. M. Papadaki, V. Stoikou, D. Mantzavinos and J.L. Rodriguez-Miranda, Process Saf. Environ. Protect. 80 (2002) 186.

    Google Scholar 

  19. HEL, SIMULAR Reaction Calorimeter, Operating Manual, Vol. 1–3.

  20. M. Papadaki and H.P. Nawada, Int. J. Chem. Reactor Eng., 1 (2003), A40.

    Google Scholar 

  21. M. Papadaki, R.J. Emery, E. Serra, R. Nomen and J. Sempere, Green Chem. 4 (2002) 199.

    Google Scholar 

  22. Jun Gao and M. Papadaki, 4th European Thermal Sciences Conference, 29th–31st March 2004, Birmingham, UK, Session 12, Thermal Processes, Article PRO Z (CD Rom).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadaki, M. Use of Reaction Calorimetry in Thermal Risk Assessment Studies and Safe Design of Batch Reactions That Can Lead to a Runaway: Application on Hydrogen Peroxide. Topics in Catalysis 29, 207–213 (2004). https://doi.org/10.1023/B:TOCA.0000029805.23301.cd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000029805.23301.cd

Navigation