Skip to main content
Log in

Transformed Roots of Lupinus mutabilis: Induction, Culture and Isoflavone Biosynthesis

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Transformed roots of Lupinus mutabilis cv. Potosi induced by Agrobacterium rhizogenes strain R1601 were cultured on Murashige and Skoog-based medium lacking kanamycin sulphate, or with this antibiotic at 40 mg l−1. The neomycin phosphotransferase gene in the genome of transformed roots was confirmed by non-radioactive Southern hybridisation. Neomycin phosphotransferase protein was detected by ELISA. Transformed roots synthesised isoflavones, but not quinolizidine alkaloids; the latter are typical secondary metabolites of lupin normally produced in aerial parts of the plant. Genistein and 2′-hydroxygenistein, were the main secondary metabolites in cultured, transformed roots, whereas the glycoside genistin was more abundant in roots of non-transformed plants. Wighteone concentrations in transgenic roots were higher than those of non-transformed roots. Transformed roots produced twice the concentration of isoflavones compared with roots from non-transformed plants, indicating that Ri plasmid T-DNA genes modified isoflavone concentration and pattern of biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhasan SA, Aranha O & Sarkar FH (2001) Genistein elicits pleiotropic molecular effects on head and neck cancer cells. Clin. Cancer Res. 7: 4174-4181

    CAS  PubMed  Google Scholar 

  • Babaoglu M, Power JB & Davey MR (2000a) Genetic engineering of grain legumes: key transformation events. AgbiotechNet 2 June, ABN 050: 1-8

  • Babaoglu M, McCabe M, Power JB & Davey MR (2000b) Agrobacterium-mediated transformation of Lupinus mutabilis using shoot apical explants. Acta Physiol. Plant. 22: 111-119

    CAS  Google Scholar 

  • Baiza AM, Quiroz-Moreno A, Ruiz JA & Loyola-Vargas VM (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tiss. Org. Cult. 59: 9-17

    Google Scholar 

  • Baumel PJ, Jeschke WD, Rath N, Czygan F-C & Proksch P (1995) Modelling of quinolizidine alkaloid net flows in Lupinus albus and between L. albus and the parasite Cuscuta reflexa: new insights into the site of quinolizidine alkaloid synthesis. J. Exp. Bot. 46: 1721-1730

    Google Scholar 

  • Berlin J, Fecker L, Rugenhagen C, Sator C, Strack D, Witte L & Wray V (1991a) Isoflavone glycoside formation in transformed and non-transformed suspension and hairy cultures of L. polyphyllus and L. hartwegii. Z. Naturforsch. 46c: 725-734

    Google Scholar 

  • Berlin J, Rugenhagen C, Rippert M & Erdogan S (1991b) Effects of culture conditions on isoflavonoid levels of transformed and nontransformed cultures of Lupinus- A comparison of suspension and hairy root cultures. Z. Naturforsch. 46c: 735-742

    Google Scholar 

  • Boehm R, Sommer S, Li S-M & Heide L (2000) Genetic engineering on shikonin biosynthesis: expression of the bacterial ubiA gene in Lithospermum erythrorhizon. Plant Cell Physiol. 41: 911-919

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Farrand SK, Noel GR & Widholm JM (2000) Highefficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210: 195-204

    Article  CAS  PubMed  Google Scholar 

  • Damiano C & Monticelli S (1998) In vitro fruit trees rooting by Agrobacteirum rhizogenes wild type of infection. Electron. J. Biotechnol. 1: 1-8 (http:www.ejb.org/content/vol11/ issue3/full/4/index.html)

    Article  Google Scholar 

  • Dellaporta SL, Wood J & Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 4: 9-21

    Google Scholar 

  • Fukutake M, Takahashi M, Ishida K, Kawamura H, Sugimura T & Wakabayashi K (1996) Quantification of genistein and genistin in soybeans and soybean products. Food Chem. Toxicol. 34: 457-461

    CAS  PubMed  Google Scholar 

  • Hoeck JA, Fehr WR, Murphy PA & Welke GA (2000) Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40: 48-51

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA & Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907

    CAS  PubMed  Google Scholar 

  • Joao KHL & Brown TA (1994) Long-term stability of root cultures of tomato transformed with Agrobacterium rhizogenes R1601. J. Exp. Bot. 45: 641-647

    Google Scholar 

  • Jung W, Yu O, Lau SMC, O'Keefe DP, Odell J, Fader G & McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnol. 18: 208-212

    CAS  Google Scholar 

  • Kneer R, Poulev AA, Olesinski A & Raskin I (1999) Characterization of the elicitor-induced biosynthesis and secretion of genistein from roots of Lupinus luteus L. J. Exp. Bot. 50: 1553-1559

    Article  CAS  Google Scholar 

  • Kovats E (1958) Gaschromatographische charakterisierung organischer verbindungen. 1. Retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv. Chim. Acta 41: 1915-1932

    CAS  Google Scholar 

  • Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, de Kathen A, Pickardt T & Schieder O (2000) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep. 19: 235-240

    Article  CAS  Google Scholar 

  • Kumar V, Jones B & Davey MR (1991) Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Rep. 10: 135-138

    CAS  Google Scholar 

  • Li H, Wylie SJ & Jones MGK (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep. 19: 634-637

    CAS  Google Scholar 

  • McCabe MM, Power JB, de Laat AMM & Davey MR (1996) Detection of single copy genes in DNA from transgenic plants by non-radioactive Southern blot analysis. Mol. Biotechnol. 7: 1-6

    Google Scholar 

  • Merkli A, Christen P & Kapetanidis I (1997) Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Rep. 16: 632-636

    CAS  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D & Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94: 8393-8398

    Article  CAS  PubMed  Google Scholar 

  • Moore L, Warren G & Strobel GA (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium tumefaciens. Plasmid 2: 617-626

    Article  CAS  PubMed  Google Scholar 

  • Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep. 7: 9-12

    Article  Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497

    CAS  Google Scholar 

  • Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Lu C-Y, Atkins CA & Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol. Breed. 3: 341-349

    Article  CAS  Google Scholar 

  • Porter JR (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit. Rev. Plant Sci. 10: 387-421

    Google Scholar 

  • Pythoud F, Sinkar VP, Nester EW & Gordon MP (1987) Increased virulence of Agrobacterium rhizogenes conferred by the vir region pTiBo542: application to genetic engineering of poplar. Bio/Technol. 5: 1323-1327

    Article  Google Scholar 

  • Rech EL, Golds TJ, Husnain T, Vainstein MH, Jones B, Hammatt N, Mulligan BJ & Davey MR (1989) Expression of a chimaeric resistance gene introduced into the wild soybean Glycine canescens using a cointegrate Ri plasmid vector. Plant Cell Rep. 8: 3-36

    Article  Google Scholar 

  • Saalbach I, Pickardt T, Machemehl F, Saalbach G, Schieder O & Muntz K (1994) A chimeric gene encoding the methionine-rich 2S albumin of the Brazil (Bertolletia excelsa H.B.K) is stably expressed and inherited in transgenic grain legumes. Mol. Gen. Genet. 242: 226-236

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning. A Laboratory Manual Vol. 3, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA

    Google Scholar 

  • Shanks JV & Morgan J (1999) Plant’ hairy root’ culture. Curr. Opin. Biotechnol. 10: 151-155

    Article  CAS  PubMed  Google Scholar 

  • Siefkes-Boer HJ, Noonan MJ, Bullock DW & Conner AJ (1995) Hairy root transformation system in large seeded grain legumes. Israel J. Plant Sci. 43: 1-5

    Google Scholar 

  • Taylor BH, Amasino RM, White FF, Nester EW & Gordon MP (1985) T-DNA analysis of plants regenerated from hairy root tumours. Mol. Gen. Genet. 201: 554-557

    CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol. Plant. 79: 140-146

    Article  CAS  Google Scholar 

  • Win W, Cao ZX, Peng XX, Trush MA & Li YB (2002) Different effects of genistein and resveratrol on oxidative DNA damage in vitro. Mutation Res.-Genet. Toxicol. Environ. Mut. 513: 113-120

    CAS  Google Scholar 

  • Wink M (1987) Site of lupanine and sparteine biosynthesis in intact plants and in vitro organ cultures. Z. Naturforsch. 42c: 868-872

    Google Scholar 

  • Wink M (1993) Quinolizidine alkaloids. In:Waterman P (ed) Methods in Plant Biochemistry Vol. 8 (pp. 197-239). Academic Press, London

    Google Scholar 

  • Yu O, Junk W, Shi J, Croes RA, Fader GM, McGonigle B & Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol. 124: 781-794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babaoglu, M., Davey, M.R., Power, J.B. et al. Transformed Roots of Lupinus mutabilis: Induction, Culture and Isoflavone Biosynthesis. Plant Cell, Tissue and Organ Culture 78, 29–36 (2004). https://doi.org/10.1023/B:TICU.0000020386.03780.ea

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TICU.0000020386.03780.ea

Navigation