Skip to main content
Log in

Use of Tissue Culture and Biotechnology for the Genetic Improvement of Watermelon

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Watermelon is an important vegetable crop world-wide with over 81 million metric tons produced annually. Despite these high production figures, million of metric tons of fruit are lost in fields to disease. Genetic improvement through tissue culture and biotechnology offer potential routes of improving fruit harvest by offering higher quality products, like seedless fruit, or by introducing recombinant genes or generating somaclonal variants with improved resistance to biotic or abiotic stresses. The purpose of this review is to highlight how tissue culture and biotechnology have been used for the genetic improvement of watermelon and provide suggestions for future application of these methods to facilitate further genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelberg J & Rhodes BB (1989) Micropropagation from zygotic tissues of watermelon. In: Thomas CE (ed) Proceedings of Cucurbitaceae 89: Evaluation and Enhancement of Cucurbit Germplasm (pp. 110–112). USDA/ARS

  • Alper Y, Adelberg JW, Young RE & Rhodes BB (1994a) Unitized, nonselective cutting of in vitro watermelon. Trans. ASAE 37: 1331–1336

    Google Scholar 

  • Alper Y, Young RE, Adelberg JW & Rhodes BB (1994b) Mass handling of watermelon microcuttings. Trans. ASAE 37: 1337–1343

    Google Scholar 

  • Ammirato PV (1987) Organizational events during somatic embryogenesis. In: Green CE, Somers DA, Hackett WP & Biesboer DD (eds) Plant Tissue and Cell Culture (pp. 57–81). Alan R. Liss, Inc.

  • Andrus CF, Seshadri VS & Grimball C (1971) Production of Seedless Watermelons. Agricultural Research Service, United States Department of Agriculture Technical Bulletin No. 1425

  • Anghel I & Rosu A (1985) In vitro morphogenesis in diploid, triploid and tetraploid genotypes of watermelon - Citrullus lanatus (Thumb.) Mansf. Rev. Roum. Biol. - Biol. Végét. 30: 43–55

    Google Scholar 

  • Anonymous (2002) Information Systems for Biotechnology website. Retrieved January 2002 from http://www.isb.vt.edu/cfdocs/ fieldtests1.cfm

  • Anonymous (2003a) Lycopene. Retrieved 22 May 2003 from http://www.lycopene.org

  • Anonymous (2003b) Fields of green.Watermelon Promotion Board. Retrieved 22 May 2003 from http://www.watermelon.org

  • Barnes LR (1979) In vitro propagation of watermelon. Sci. Hort. 11: 223–227

    Google Scholar 

  • Barnes LR, Cochran FD, Mott RL & Henderson WR (1978) Potential uses of micropropagation for cucurbits. Cucubit Genet. Coop. Rep 1: 21–22

    Google Scholar 

  • Boyhan GJ, Norton D, Jacobsen BJ & Abrahams BR (1992) Evaluation of watermelon and related germplasm for resistance to zucchini yellow mosaic virus. Plant Dis. 76: 251–252

    Google Scholar 

  • Boyhan GJ, Gudauskas RT, Norton JD & Abrahams BR (1994) Evaluation of watermelon and related germplasm for resistance to the Egyptian strain of zucchini yellow mosaic virus. Plant Dis. 78: 100

    Google Scholar 

  • Choi PS, Soh WY, Kim YS, Yoo OJ & Liu JR (1994) Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep. 13: 344–348

    Google Scholar 

  • Clough GH & Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis. 79: 1107–1109

    Google Scholar 

  • Compton ME (1999) Dark pretreatment improves adventitious shoot organogenesis from cotyledons of diploid watermelon. Plant Cell Tiss. Org. Cult. 58: 185–188

    Google Scholar 

  • Compton ME (2000) Interaction between explant size and cultivar impacts shoot organogenic competence of watermelon cotyledons. HortScience 35: 749–750

    Google Scholar 

  • Compton ME & Gray DJ (1992) Micropropagation as a means of rapidly propagating triploid and tetraploid watermelon. Proc. Fla. State Hort. Soc. 105: 352–354

    Google Scholar 

  • Compton ME & Gray DJ (1993a)Shoot organogenesis and plant regeneration from cotyledons of diploid, triploid and tetraploid watermelon.J. Am. Soc. Hort. Sci. 118: 151–157

    Google Scholar 

  • Compton ME & Gray DJ (1993b) Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Rep. 12: 61–65

    Google Scholar 

  • Compton ME & Gray DJ (1994) Adventitious shoot organogenesis and plant regeneration from cotyledons of tetraploid watermelon. HortScience 29: 211–213

    Google Scholar 

  • Compton ME & Gray DJ (1999) Shoot organogenesis from watermelon cotyledon explants. In: Trigiano RN & Gray DJ (eds) Plant Tissue Culture Concepts and Laboratory Exercises, 2nd edn (pp. 149–158). CRC Press, Boca Raton, FL

    Google Scholar 

  • Compton ME, Gray DJ & Elmstrom GW (1993a) A simple protocol for micropropagating diploid and tetraploid watermelon using shoot-tip explants. Plant Cell Tiss. Org. Cult. 33: 211–217

    Google Scholar 

  • Compton ME, Gray DJ, Hiebert E & Lin CM (1993b) Expression of the ?-glucuronidase gene in watermelon cotyledon explants following particle bombardment or infection with Agrobacterium tumefaciens. HortScience 28: 138

    Google Scholar 

  • Compton ME, Gray DJ & Elmstrom GW (1994a) Regeneration of tetraploid plants from cotyledons of diploid watermelon. Proc. Fla. State. Hort. Soc. 107: 107–109

    Google Scholar 

  • Compton ME, Gray DJ, Hiebert E & Lin CM (1994b) Microprojectile bombardment prior to co-cultivation with Agrobacterium improves GUS expression in watermelon cotyledons. In Vitro Cell. Dev. Biol. 30A: 62

    Google Scholar 

  • Compton ME, Gray DJ & Elmstrom GW (1996) Identification of tetraploid regenerants from cotyledons of diploid watermelon cultured in vitro. Euphytica 87: 165–172

    Google Scholar 

  • Compton ME, Barnett N & Gray DJ (1999) Use of fluorescein diacetate (FDA) to determine ploidy of in vitro watermelon shoots. Plant Cell Tiss. Org. Cult. 58: 199–203

    Google Scholar 

  • Compton ME, Pierson BL & Staub JE (2001) Micropropagation for recovery of Cucumis hystrix. Plant Cell Tiss. Org. Cult. 64: 63–67

    Google Scholar 

  • Crall JM, Elmstrom GW & McCuistion Jr FT (1994) SSDL: a highquality icebox watermelon breeding line resistant to fusarium wilt and anthracnose. HortScience 29: 707–708

    Google Scholar 

  • Decoteau DD (2000) Vegetable Crops. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Destefano-Beltran L, Nagpala PG, Cetiner MS, Dodds JH & Jaynes JM (1990) Enhancing bacterial and fungal disease resistance in plants: application to potato. In: Vayda ME & Park WD (eds) The Molecular and Cellular Biology of the Potato (pp. 205–221). CAB International, Wallingford

    Google Scholar 

  • Dong JZ & Jia SR (1991) High efficiency plant regeneration from cotyledons of watermelon (Citrullus vulgaris Schrad.). Plant Cell Rep. 9: 559–562

    Google Scholar 

  • Elmstrom GW & Maynard DN (1992) Growing Seedless Watermelons. Cooperative Extension Service, University of Fla, Institute of Food and Agricultural Sciences Bulletin HS 687

  • Fehér T (1993) Watermelon: Citrullus lanatus (Thunb.) Matsum. & Nakai. In: Kalloo G & Bergh BO (eds) Improvement of Vegetable Crops (pp. 295–311). Pergamon Press, Oxford

    Google Scholar 

  • Fuchs M, McFerson JR, Tricoli DM, McMaster JR, Deng RZ, Boeshore ML, Reynolds JF, Russell PF, Quemada HD & Gonsalves D (1997) Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol. Breed. 3: 279–290

    Google Scholar 

  • Garster H (1997) The potential role of lycopene for human health. J. Am. Coll. Nutr. 16: 109–126

    Google Scholar 

  • Gillaspie Jr AG & Wright JM (1993) Evaluation of Citrullus sp. germ plasm for resistance to watermelon mosaic virus 2. Plant Dis. 77: 352–354

    Google Scholar 

  • Gray DJ & Elmstrom GW (1991) Process for the accelerated production of triploid seeds for seedless watermelon cultivars. United States Patent No. 5,007,198

  • Hammerschlag FA (1988) Selection of peach cells for insensitivity to culture filtrates of Xanthomonas campestris pv. pruni and regeneration of resistant plants. TAG 76: 865–869

    Google Scholar 

  • Hammerschlag FA (1990) Resistant responses of plants regenerated from peach callus to Xanthomonas campestris pv. pruni. J.Amer. Soc. Hort. Sci. 115: 1034–1037

    Google Scholar 

  • Huang Y, Nordeen RO, Di M, Owens LD & McBeath JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers resistance to Pseudomonas syringae pv. tabaci. Phytopathology 87: 494–499

    Google Scholar 

  • Jaworski JM & Compton ME (1997) Plant regeneration from cotyledons of five watermelon cultivars. HortScience 32: 469

    Google Scholar 

  • Jayasankar S & Litz RE (1998) Characterization of embryogenic mango cultures selected for resistance to Colletotrichum gloeosporioides culture filtrate and phytotoxin. Theor. Appl. Genet. 96: 823–831

    Google Scholar 

  • Jayasankar S, Li Z & Gray DJ (2000) In-vitro selection of Vitis vinifera 'Chardonnay' with Elsinoe ampelina culture filtrate is accompanied by fungal resistance and enhanced secretion of chitinase. Planta 211: 200–208

    Google Scholar 

  • Jaynes JM, Xanthopoulos KG, Destefano-Beltran L & Dodds JH (1987) Increasing bacterial disease resistance in plants utilizing antibacterial genes from insects. Bio-Essays 6: 263–270

    Google Scholar 

  • Kihara H (1951) Triploid watermelons. Proc. Am. Soc. Hort. Sci. 58: 217–230

    Google Scholar 

  • Liu Q, Ingersoll J, Owens L & Salih S (2001) Response of transgenic royal gala apple (Malus × domestica Borkh) shoots carrying amodified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Rep. 20: 306–312

    Google Scholar 

  • Lower RL & Johnson KW (1969) Observations on sterility of induced autotetraploid watermelons. J. Am. Soc. Hort. Sci. 94: 367–369

    Google Scholar 

  • Lucier G & Lin BH (2001) Factors affecting watermelon consumption in the United States. In: Anonymous (eds) Vegetables and Specialties: Situation and Outlook, VGS-287 (pp. 23–29). USDAERS

  • Marr CW & Gast KLB (1991) Reactions by consumers in a 'farmers' market to prices for seedless watermelon and ratings of eating quality. HortTechnology 1: 105–106

    Google Scholar 

  • McCuistion G & Elmstrom GW (1993) Identifying polyploids of various cucurbits. Proc. Fla. State Hort. Soc. 106: 155–157

    Google Scholar 

  • Mohr HC (1986) Watermelon breeding. In: Bassett MJ (ed) Breeding Vegetable Crops (pp. 37–66). AVI Publishing Co., Inc, Westport, CT

    Google Scholar 

  • Moore J (2001). Blot out blotch. Am. Veg. Grower 49: 22–24

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Namba S, Ling K, Gonsalves C, Slightom JL & Gonsalves D (1992) Protection of transgenic plants expressing the coat protein gene of watermelon mosaic virus II or zucchini yellow mosaic virus against six potyviruses. Phytopathology 82: 940–946

    Google Scholar 

  • Provvidenti R (1991) Inheritance of resistance to the Florida strain of zucchini yellow mosaic virus in watermelon. HortScience 26: 407–408

    Google Scholar 

  • Rane KK & Latin RX (1992) Bacterial fruit blotch of watermelon: association of the pathogen with seed. Plant Dis 76: 509–512

    Google Scholar 

  • Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M & Chang YF (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. & Dev. Biol. Plant 37: 127–132

    Google Scholar 

  • Scorza R & Hammerschlag FA (1992) Stone fruits. In: Hammerschlag FA & Litz RE (eds) Biotechnology of Perennial Fruit Crops (pp. 277–301). CAB International, Wallingford

    Google Scholar 

  • Singsit C & Ozias-Akins P (1992) Rapid estimation of ploidy levels in in vitro-regenerated interspecific Arachis hybrids and fertile triploids0. Euphytica 64: 183–188

    Google Scholar 

  • Singsit C & Veilleux (1991) Chloroplast density in guard cells of leaves of anther-derived potato plants grown in vitro and in vivo. HortScience 26: 592–594

    Google Scholar 

  • Srivastava DR, Andrianov VM & Piruzian ES (1989) Tissue culture and plant regeneration of watermelon (Citrullus vulgaris Schrad. cv. Melitopolski). Plant Cell Rep. 8: 300–302

    Google Scholar 

  • Swaider JM & Ware GW (2002) Producing Vegetable Crops, 5th edn. Interstate Publishers, Inc., Danville, Ill

    Google Scholar 

  • Tricoli DM, Carney KJ, Russell PF, Quemada HD, McMaster RJ, Reynolds JF & Deng RZ (2002) Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. United States Patent No. 6,337,431

  • Veilleux RE & Johnson AAT (1998) Somaclonal variation: molecular analysis, transformation interaction, and utilization. In:Janick J (ed) Plant Breeding Reviews, Vol. 16 (pp. 229–268). John Wiley & Sons, Inc., New York

    Google Scholar 

  • Watts VM (1962) A marked male-sterile mutant in watermelon. J. Am. Soc. Hort. Sci. 81: 498–505

    Google Scholar 

  • Watts VM (1967) Development of disease resistance and seed production in watermelon stocks carrying the msg gene. J. Am. Soc. Hort. Sci. 91: 579–580

    Google Scholar 

  • Xia X, Liu Y, Liu W & Chen A (1988) Selection of watermelon (Citrullus vulgaris) male-sterile line G17AB. J. Shenyany Agric. Univ. 19: 9–13

    Google Scholar 

  • Zhang XP & Rhodes BB (1992) Watermelon variety improvement in China. Cucurbit Genet. Coop. Rep. 15: 76–79

    Google Scholar 

  • Zhang XP & Wang M (1990) A genetic male-sterile (ms) watermelon from China. Cucurbit Genet. Coop. Rep. 13: 45

    Google Scholar 

  • Zhang XP, Rhodes BB & Adelberg JW (1994a) Shoot regeneration from immature cotyledons of watermelon. Cucurbit Genet. Coop. Rep. 17: 111–115

    Google Scholar 

  • Zhang XP, Rhodes BB & Whitesides JF (1994b) Determination of watermelon ploidy level using flow cytometry. Cucurbit Genet. Coop. Rep. 17: 102–105

    Google Scholar 

  • Zhang XP, Skorupska HT & Rhodes BB (1994c) Cytological expression in the male-sterile ms mutant in watermelon. J. Hered. 85: 279–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Compton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compton, M.E., Gray, D. & Gaba, V.P. Use of Tissue Culture and Biotechnology for the Genetic Improvement of Watermelon. Plant Cell, Tissue and Organ Culture 77, 231–243 (2004). https://doi.org/10.1023/B:TICU.0000018428.43446.58

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TICU.0000018428.43446.58

Navigation