Skip to main content
Log in

A Possibility for Studying Gravitational Properties of the Neutrino

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the effect that the gravitational field of a neutrino pulse radiated in the collapse of presupernova nuclei has on the observable optical radiation spectra of atoms at the supernova surface. We show that at the modern level of development of experimental methods, neutrino monitoring supplemented by optical monitoring of supernova candidates provides a unique possibility to check whether the Einstein equivalence principle is satisfied for neutrinos of each of the three types (electron, muon, and tau-lepton) and their antiparticles, to estimate the change of the gravitational potential at the surface of the star at the instant of the neutrino radiation pulse, and to obtain upper limits on the mass values of these neutrinos in a new way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. C. Witteborn and W. M. Fairbank, Phys. Rev. Lett., 19, 1049 (1967).

    Google Scholar 

  2. J. W. T. Dubbs, J. A. Harwey, D. Paya, and H. Horstmann, Phys. Rev., 139, 756 (1965).

    Google Scholar 

  3. R. Colella, A. W. Overhauser, and S. A. Werner, Phys. Rev. Lett., 34, 1742 (1975).

    Google Scholar 

  4. T. W. Darling, F. Rossi, G. I. Opat, and G. F. Moorhead, Rev. Modern Phys., 64, 237 (1992).

    Google Scholar 

  5. V. S. Imshennik and D. K. Nadezhin, Usp. Fiz. Nauk, 156, 561 (1988).

    Google Scholar 

  6. D. R. O. Morrison, “Review of supernova 1987A,” Preprint CERN/EP 88-9, 26 January, 1988, CERN, Geneva (1988).

    Google Scholar 

  7. K. S. Hirata, T. Kajita, M. Koshiba, et al., Phys. Rev. Lett., 58, 1490 (1987).

    Google Scholar 

  8. G. T. Zatsepin and O. G. Ryazhskaya, Sov. Phys. Usp., 28, 726 (1985).

    Google Scholar 

  9. P. C. Vaidya, Proc. Indian Acad. Sci. Math. Sci., 31, 264 (1949).

    Google Scholar 

  10. S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Univ. Press, New York (1983).

    Google Scholar 

  11. V. I. Grigor'ev and I. P. Denisova, “Parametric method for integrating geodesic motion equations in the Vaidya space [in Russian],” Preprint No. 2000-11/615, NIIYaF, Moscow State Univ., Moscow (2000).

    Google Scholar 

  12. I. P. Denisova and A. A. Zubrilo, Gravit. Cosmology, 6, 251 (2000).

    Google Scholar 

  13. O. S. Ivanitskaya, Lorentz Basis and Gravitational Effects in the Einstein Theory of Gravity [in Russian], Nauka i Tekhnika, Minsk (1979).

    Google Scholar 

  14. C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge Univ. Press, Cambridge (1981).

    Google Scholar 

  15. T. Neunhoffer, “AMANDA: Current status,” in: Proc. 27th Intl. Cosmic Ray Conf. (edK. H. Kampert, G. Heinzelmann, and C. Spiering, eds.), Copernicus Gesellschaft, Hamburg (2001), p. 1125.

    Google Scholar 

  16. G. T. Zatsepin, JETPLetters, 8, 205 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisov, V.I., Denisova, I.P. & Svertilov, S.I. A Possibility for Studying Gravitational Properties of the Neutrino. Theoretical and Mathematical Physics 138, 142–149 (2004). https://doi.org/10.1023/B:TAMP.0000010642.45121.a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000010642.45121.a0

Navigation