Skip to main content
Log in

Equilibrium State of Inhomogeneous Plasma

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of a self-consistent determination of an essentially inhomogeneous equilibrium state of classical plasma. The solutions of the stationary Vlasov–Poisson equations are constructed in the form of a localized transition layer that separates the domains of homogeneous plasmas with different equilibrium parameters. The layer can also transform into a local perturbation inside a homogeneous plasma. In both cases, the solution contains neither mass currents nor electric currents, and all electrodynamic and hydrodynamic quantities and their derivatives are continuous. The parameters of the adjacent domains uniquely determine the transition layer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau, Zh. Eksp. Teor. Fiz., 7, 203 (1937).

    Google Scholar 

  2. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New York (1975).

    Google Scholar 

  3. Yu. L. Klimontovich, Statistical Physics [in Russian], Nauka, Moscow (1982); English transl., Harwood, New York (1986).

    Google Scholar 

  4. L. S. Kuz'menkov, Theor. Math. Phys., 86, 159 (1991).

    Google Scholar 

  5. I. B. Bernstein, J. M. Green, and M. D. Kruskal, Phys. Rev., 108, 546 (1957).

    Google Scholar 

  6. A. I. Akhiezer and G. Ya. Lyubarskii, Dokl. Akad. Nauk SSSR, 80, 193 (1951).

    Google Scholar 

  7. L. S. Kuz'menkov, A. A. Sokolov, and O. O. Trubachev, Izv. Vyssh. Uchebn. Zaved. Fiz., 26, 17 (1983).

    Google Scholar 

  8. V. S. Vladimirov and S. V. Krivitskii, JETP, 74, 805 (1992).

    Google Scholar 

  9. I. M. Aleshin, M. A. Drofa, and L. S. Kuzmenkov, J. Plasma Phys., 51, No. 2, 177 (1994).

    Google Scholar 

  10. A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, Yadern. Sintez, 1, 82 (1961).

    Google Scholar 

  11. I. M. Aleshin and D. V. Peregudov, Vestn. Mosk. Univ. Ser. Fiz. Astron., 41, No. 1, 8 (2000).

    Google Scholar 

  12. R. Z. Sagdeev, “Collective processes and shock waves in rarefied plasma,” in: Problems of Plasma Theory [in Russian] (M. A. Leontovich, ed.), Vol. 4, Atomizdat, Moscow (1964), p. 20.

    Google Scholar 

  13. L. P. Block, Cosmic Electrodynamics, 3, 349 (1976).

    Google Scholar 

  14. D. C. Montgomery and G. Joyce, Plasma Phys., 3, 1 (1969).

    Google Scholar 

  15. A. V. Gurevich, B. N. Meerson, and I. V. Rogachevskii, Fiz. Plazmy, 11, 1213 (1985).

    Google Scholar 

  16. A. P. Kropotkin and S. A. Mart'yanov, Geomagnet. Aeronom, 25, No. 6, 259 (1985); 29, No. 6, 930 (1989).

    Google Scholar 

  17. A. A. Vlasov, Statistical Distribution Functions [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  18. I. Langmuir, Phys. Rev., 2, 450 (1913).

    Google Scholar 

  19. V. S. Voronin, Yu. T. Zozulya, and A. N. Lebedev, Zh. Tekhn. Fiz., 42, 546 (1972).

    Google Scholar 

  20. I. M. Aleshin and L. S. Kuz'menkov, Vestn. Mosk. Univ. Ser. Fiz. Astron., 35, No. 2, 46 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleshin, I.M., Trubachev, O.O. Equilibrium State of Inhomogeneous Plasma. Theoretical and Mathematical Physics 138, 134–141 (2004). https://doi.org/10.1023/B:TAMP.0000010641.32100.cc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000010641.32100.cc

Navigation