Skip to main content
Log in

Density Functional Tight-Binding Studies of Carbon Nanotube Structures

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A density functional tight-binding self-consistent charge approach has been used to study the structures and elastic properties of nine model carbon nanotubes of different helicities and diameters between 5.5 and 10.8 A. The systems contain from 112 to 268 atoms and were optimized under periodic boundary conditions in the axial direction. Both the carbon networks and the overall tube dimensions were optimized. Most of the C—C bond lengths are slightly lengthened relative to graphene (two-dimensional graphite); the others remain essentially the same or are shorter. There is overall a longitudinal compression of the tube. The strain energy per atom, relative to graphene, varies inversely with the square of the tube radius. The Young's moduli decrease with increasing radius but do not depend upon chirality. The Poisson ratios are nearly constant. The consequences of removing an electron from each system were also investigated. In most instances, the tube dimensions were little affected; in only a few cases is there a change in length or radius (positive or negative) as large as 0.10%. The Young's moduli remain the same as for the neutral systems, but the Poisson ratios tend to increase for metals and semimetals and to decrease for semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Iijima, S. Nature 1991, 354, 56.

    Google Scholar 

  2. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, 1996.

    Google Scholar 

  3. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

    Google Scholar 

  4. Dai, H.; Kong, J.; Zhou, C.; Franklin, N.; Tombler, T.; Cassell, A.; Fan, S.; Chapline, M. J. Phys. Chem. B 1999, 103, 11246.

    Google Scholar 

  5. Harris, P. J. F. Carbon Nanotubes and Related Structures; Cambridge University Press: Cambridge, UK, 1999.

    Google Scholar 

  6. Tanaka, K.; Yamabe, T.; Fukui K. (Eds.), The Science and Technology of Carbon Nanotubes; Elsevier: Amsterdam, 1999.

    Google Scholar 

  7. Ajayan, P. M. Chem. Rev. 1999, 99, 1787.

    PubMed  Google Scholar 

  8. Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. J. Phys. Chem. B 2000, 104, 2794.

    Google Scholar 

  9. Treacy, M. M. J.; Ebbeson, T. W.; Gibson, J. M. Nature 1996, 381, 678.

    Google Scholar 

  10. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971.

    Google Scholar 

  11. Van Lier, G.; Van Alsenoy, C.; Van Doren, V.; Geerlings, P. Chem. Phys. Lett. 2000, 326, 181.

    Google Scholar 

  12. Yu, M.-F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Phys. Rev. Lett. 2000, 84, 5552.

    PubMed  Google Scholar 

  13. Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. J. Chem. Phys. 1996, 104, 2089.

    Google Scholar 

  14. Falvo, M. R.; Clary, G. J.; Taylor, R. M., II; Chi, V.; Brooks, F. P., Jr.; Washburn, S.; Superfine, R. Nature 1997, 389

    PubMed  Google Scholar 

  15. Chesnokov, S. A.; Nalimova, V. A.; Rinzler, A. G.; Smalley, R. E.; Fischer, J. E. Phys. Rev. Lett. 1999, 82, 343.

    Google Scholar 

  16. Mintmire, J. W.; Dunlap, B. I.; White, C. T. Phys. Rev. Lett. 1992, 68, 631.

    PubMed  Google Scholar 

  17. Hamada, N.; Sawada, S.; Oshiyama, A. Phys. Rev. Lett. 1992, 68, 1579.

    PubMed  Google Scholar 

  18. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 1992, 46, 1804

    Google Scholar 

  19. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Appl. Phys. Lett. 1992, 60, 2204.

    Google Scholar 

  20. White, C. T.; Robertson, D. H.; Mintmire, J. W. Phys. Rev. B 1993, 47, 5485.

    Google Scholar 

  21. Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Nature 1998, 391, 59.

    Google Scholar 

  22. Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62.

    Google Scholar 

  23. Wirth, I.; Eisebitt, S.; Kann, G.; Eberhardt, W. Phys. Rev. B 2000, 61, 5719.

    Google Scholar 

  24. Dresselhaus, M. S. Science 2001, 292, 650.

    PubMed  Google Scholar 

  25. Ouyang, M.; Huang, J.-L.; Cheung, C. L.; Lieber, C. M. Science 2001, 292, 702.

    PubMed  Google Scholar 

  26. Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. B 1996, 53, 2044.

    Google Scholar 

  27. Treboux, G.; Lapstun, P.; Silverbrook, K. J. Phys. Chem. B 1999, 103, 1871.

    Google Scholar 

  28. Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Science 1999, 284, 1340.

    PubMed  Google Scholar 

  29. Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, Th.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.

    Google Scholar 

  30. Frauenheim, Th.; Seifert, G.; Elstner, M.; Hajnal, Z.; Jungnickel, G.; Porezag, D.; Suhai, S.; Scholz, R. Phys. Stat. Sol. 2000, 217, 41.

    Google Scholar 

  31. Frauenheim, T.; Jungnickel, G.; Kohler, T.; Stephan, U.; Non-Cryst, J. Solids 1995, 182, 186.

    Google Scholar 

  32. Porezag, D.; Pederson, M. R.; Frauenheim, T.; Kohler, T. Phys. Rev. B 1995, 52, 14963.

    Google Scholar 

  33. Kohler, T.; Sternberg, M.; Porezag, D.; Frauenheim, T. Phys. Stat. Sol. A 1996, 154, 69.

    Google Scholar 

  34. Condon, E. U.; Odishaw, H. (Eds.), Handbook of Physics, McGraw-Hill: New York, 1958.

    Google Scholar 

  35. Baskin, Y.; Meyer, L. Phys. Rev. 1955, 100, 544.

    Google Scholar 

  36. Robertson, D. H.; Brenner, D. W.; Mintmire, J. W. Phys. Rev. B 1992, 45, 12592.

    Google Scholar 

  37. Sanchez-Portal, D.; Artacho, E.; Soler, J. M.; Rubio, A.; Ordejon, P. Phys. Rev. B 1999, 59, 12678.

    Google Scholar 

  38. Adams, G.; Sankey, O.; Page, J.; O'Keeffe, M.; Drabold, D. Science 1992, 256, 1792.

    Google Scholar 

  39. Kurti, J.; Kresse, H. Kuzmany, G. Phys. Rev. B 1998, 58, R8869.

    Google Scholar 

  40. Hernandez, E.; Goze, C.; Bernier, P.; Rubio, A.; Phys. Rev. Lett. 1998, 80, 4502.

    Google Scholar 

  41. Yakobson, B. I.; Brabec, C. J.; Bernholc, J. Phys. Rev. Lett. 1996, 76, 2511.

    PubMed  Google Scholar 

  42. Yakobson, B. I.; Smalley, R. E. Am. Sci. 1997, 85, 324.

    Google Scholar 

  43. Lu, J. P. Phys. Rev. Lett. 1997, 79, 1297

    Google Scholar 

  44. Lu, J. P. J. Phys. Chem. Solids 1997, 58, 1649.

    Google Scholar 

  45. Treacy, M. M. J.; Ebbeson, T. W.; Gibson, J. M. Nature 1996, 381, 678.

    Google Scholar 

  46. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Science 1997, 277, 1971.

    Google Scholar 

  47. Yu, M.-F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Phys. Rev. Lett. 2000, 84, 5552.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peralta-Inga, Z., Boyd, S., Murray, J.S. et al. Density Functional Tight-Binding Studies of Carbon Nanotube Structures. Structural Chemistry 14, 431–443 (2003). https://doi.org/10.1023/B:STUC.0000004487.72835.13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUC.0000004487.72835.13

Navigation