Skip to main content
Log in

Relevant Magnetic Parameters and Heavy Metals from Relatively Polluted Stream Sediments - Vertical and Longitudinal Distribution Along a Cross-City Stream in Buenos Aires Province, Argentina

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Previous magnetic and geochemical studies of stream sediments in the Northeast of Buenos Aires Province, in the Greater La Plata area, have revealed a high level of trace elements, especially lead and zinc. Continuing these preliminary works, new sampling sites were considered in order to improve and increase the magnetic mapping of this area. This part of the study focuses especially on the magnetic properties of sediments from a cross-city stream. Such stream receives a variable pollutant load from urban, industrial and diffuse sources.

Concentration-dependent magnetic parameters, magnetic carriers (para, anti and ferrimagnetic) and their features (e.g. softer or harder magnetic carrier, grain size distribution, etc.) have been calculated using magnetic measurements. According to magnetic parameters and heavy metal loads two main distinctive groups of sediment-cores are distinguished. The vertical distribution of sediments reveals a recent anthropogenic influence, possibly, belonging to the last 20-40 years.

Four out of all the magnetic parameters (magnetic susceptibility, anhysteric remanent magnetisation, S-ratio and κ ARM/κ) were chosen in order to investigate their relationship with contents of heavy metals. In all the cases, good positive correlations were obtained using linear regression. However, more significant correlation factors were achieved for grain size and magnetic feature-dependent parameters (κ ARM/κ and S-ratio) than for magnetic concentration-dependent parameters. Therefore, the κ ARM/κ and the S-ratio seem to be the most relevant magnetic parameters to describe the vertical and longitudinal distribution of heavy metals present in these stream sediments. The non-significant relationship between heavy metals and concentration-dependent parameters could be explained taking into account the discrimination of the two distinctive groups. The group belonging to the Coastal Plain shows a clear linear trend between heavy metals and magnetic susceptibility and anhysteric remanent magnetisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alzuet P., Gaspes E. and Ronco A., 1996. Mutagenecy of environmental samples from an industrialised area of the Río de La Plata Estuary using the Salmonella-Microsomal Assay. Environmental Toxicology and Water Quality, 11, 1231-1236.

    Article  Google Scholar 

  • Angulo E., 1996. The Tomlinson pollution load index applied to heavy metal “Mussel-Watch” data: a useful index to assess coastal pollution. Sci. Total. Environ.,187, 19-56.

    Article  Google Scholar 

  • Beckwith P., Ellis J., Revitt D. and Oldfield F., 1986. Heavy metal and magnetic relationships for urban source sediments. Phys. Earth Planet. Inter., 42, 67-75.

    Article  Google Scholar 

  • Bityukova L., Scholger R. and Birke M., 1999. Magnetic susceptibility as indicator of environmental pollution of soils in Tallin. Phys. Chem. Earth (A), 24, 829-835.

    Article  Google Scholar 

  • Bloemendal J., King J.K., Hall F.R. and Doh S.J., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes and sediment lithology. J. Geophys. Res., 97, 4361-4375.

    Google Scholar 

  • Cabral M.G., Hurtado M.A., Giménez J.E., Sánchez C.A., Muntz D. and da Silva M., 2002. Indices de afectación territorial en la planificación estratégica del partido de La Plata, Provincia de Buenos Aires, Argentina. V Jornadas Geológicas y Geofísicas Bonaerenses, 20 pp.

  • Chan L.S., Ng S.L., Davis A.M., Yim W.W.S. and Yeung C.H., 2001. Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny's bay, Hong Kong. Mar. Pollut. Bull., 42, 569-583.

    Article  Google Scholar 

  • Chaparro M.A.E., Gogorza C.S., Lavat A., Pazos S. and Sinito A.M., 2002. Preliminary results of magnetic characterisation of different soils in Tandil Region (Argentina) affected by the pollution of metallurgical factory. Eur. J. Env. Eng. Geophys., 7, 35-58.

    Google Scholar 

  • Chaparro M.A.E, Bidegain J.C., Sinito A.M., Gogorza C.S., Jurado S., 2003. Preliminary results of magnetic measurements on stream sediments from Buenos Aires Province, Argentina. Stud.Geophys. Geod., 47, 53-77.

    Article  Google Scholar 

  • Chaparro M.A.E, Bidegain J.C., Sinito A.M., Gogorza C.S., Jurado S., 2004. Magnetic studies applied to different environments (soils and stream sediments) from a relatively polluted area in Buenos Aires Province, Argentina. Environ. Geol. 45, 654-664.

    Article  Google Scholar 

  • Dankers P.H.M., 1978. Magnetic Properties of Dispersed Natural Iron-Oxides of Known Grain-Size. PhD. thesis, State University of Utrecht, 142 pp.

  • Desenfant F., Petrovský E. and Rochette P., 2004. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water, Air Soil Pollut., 152, 297-312.

    Article  Google Scholar 

  • Dunlop J. and Özdemir Ö., 1997. Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge, 573 pp.

    Book  Google Scholar 

  • Ďurža O., 1999. Heavy contamination and magnetic susceptibility in soils around metallurgical plant. Phys. Chem. Earth (A), 24, 541-543.

    Article  Google Scholar 

  • EPA SW-846, 1986. Method 3050: Acid Digestion of Sediments, Sludges and Soils. Chapter 3: Metallic Analysis. Test Methods for Evaluating Solid Waste, Vol. 1, Section A, Part 1, Environmental Protection Agency, Washington D.C.

  • Fidalgo F. and Martinez O.R., 1983. Algunas características geomórficas dentro del Partido de La Plata (Pcia. de Buenos Aires). Asoc. Geol. Arg.,XXXVIII(2), 263-279.

    Google Scholar 

  • Frink C.R., 1996. A perspective on metals in soils. J. Soil Contam., 5, 329-359.

    Article  Google Scholar 

  • Georgeaud V.M., Rochette P., Ambrosi J.P., Vandamme D. and Williamson D., 1997. Relationship between heavy metals and magnetic properties in a large polluted catchment: The Etang de Berre (South of France). Phys. Chem. Earth (A), 22, 211-214.

    Google Scholar 

  • Goluchowska B.J. 2001. Some factors affecting an increase in magnetic susceptibility of cement dusts. J. Appl. Geophys., 48, 103-112.

    Article  Google Scholar 

  • Hanesch M. and Scholger R., 2002. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol., 42, 857-870.

    Google Scholar 

  • Heller F., Strzyszcz Z. and Magiera T., 1998. Magnetic record of industrial pollution in soils of Upper Silesia, Poland. J. Geophys. Res., 103, 17767-17774.

    Google Scholar 

  • Hoffmann V, Knab M. and Appel E., 1999. Magnetic susceptibility of roadside pollution. J Geochem. Explor., 66, 313-326.

    Article  Google Scholar 

  • Hullet Jr. L.D., Weinberger A.J., Nothcutt K.J. and Ferguson M., 1980. Chemical species in fly ash from coal-burning power plants. Science, 210, 1356-1358.

    Google Scholar 

  • Hunt A., Jones J. and Oldfield F., 1984. Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci. Total Environ., 33, 129-139.

    Article  Google Scholar 

  • Jordanova D., Veneva L., Hoffmann V., 2003. Magnetic susceptibility screening of anthropogenic impact on the Danube River sediments in Northwestern Bulgaria-preliminary results. Stud.Geophys. Geod., 47, 403–418.

    Article  Google Scholar 

  • Kapička A., Jordanova N., Petrovský E. and Ustjak S., 2001. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J. Appl. Geophys., 48, 93-102.

    Article  Google Scholar 

  • King J., Banerjee S.K., Marvin J. and Özdemir Ö., 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth Planet. Sci. Lett., 59, 404-419.

    Article  Google Scholar 

  • Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci.Lett., 189, 269-276.

    Article  Google Scholar 

  • Kukier U., Fauziah Ishak C., Summer M.E. and Miller W.P., 2003. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut.,123, 255-266.

    Article  Google Scholar 

  • Lecoanet H., Léveque F. and Ambrosi J.-P., 2003. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France). Environ. Pollut., 122, 229-234.

    Article  Google Scholar 

  • Legret M. and Pagotto C., 1999. Evaluation of pollutant loading in the runoff waters from a major rural highway. Sci. Total Environ., 235, 143-150.

    Article  Google Scholar 

  • Maher B.A., 1986. Characterisation of soils by mineral magnetic measurements. Phys. Earth Planet.Inter., 42, 76-92.

    Article  Google Scholar 

  • Maher B.A., Thompson R. and Hounslow M.W., 1999. Introduction. In: B.A. Thompson (Eds.), Quaternary Climates, Environments and Magnetism, Cambridge University Press, Cambridge, 1-48.

    Chapter  Google Scholar 

  • Manassero M., Camilion C. and Ronco A., 1998. Sedimentologia y geoquímica de metales pesados de fondo de arroyos de la vertiente del Río de La Plata. Provincia de Buenos Aires. VII Reunion Argentina de Sedimentología-Actas, 69-78.

  • Matzka J. and Maher B.A., 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos. Environ., 33, 4565-4569.

    Article  Google Scholar 

  • Peters C. and Dekkers M., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28, 659-667.

    Article  Google Scholar 

  • Peters C., Dekkers M.J. and Langereis C.G., 2002. Validation of mineral magnetic methods. Quaderni di Geofisica,26, 129-130.

    Google Scholar 

  • Petrovský E., Kapička A., Zapletal K., Šebestová E., Spanilá T., Dekkers M.J. and Rochette P, 1998. Correlation between magnetic parameters and chemical composition of lake sediments from northern Bohemia-Preliminary study. Phys. Chem. Earth, 23, 1123-1126.

    Article  Google Scholar 

  • Petrovský E. and Elwood B.B., 1999. Magnetic monitoring of air, land and water pollution. In: B.A. Maher and R. Thompson (Eds.), Quaternary Climates, Environment and Magnetism, Cambridge University Press, Cambridge, 279-322.

    Google Scholar 

  • Robertson D.J., Taylor K.G. abd Hoon S.R., 2003. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Appl. Geochem., 18, 269-282.

    Article  Google Scholar 

  • Ronco A., Sobrero C., Bulus Rosini G., Alzuet P. and Dutka B., 1995. Screening for sediment toxicity in the Río Santiago Basin: a baseline study. Environmental Toxicology and Water Quality, 10, 35-39.</del>

    Article  Google Scholar 

  • Ronco A., Camilon C. and Manassero M., 2001. Geochemistry of heavy metals in bottom sediments from streams of the western coast of the Río de la Plata estuary, Argentina. Environ.Geochem. Health, 23, 89-103.

    Article  Google Scholar 

  • SAGyP-INTA, 1989. Mapa de Suelos de la Provincia de Buenos Aires. Escala 1:500.000.

    Google Scholar 

  • Proyecto PNUD ARG 85/019, Secretaria de Agricultura Ganaderia y Pesca, Buenos Aires, 527 pp.

  • Scholger R., 1998. Heavy pollution monitoring by magnetic susceptibility measurements applied to sediments of the river Mur (Styria, Austria). Eur. J. Environ. Eng. Geophys.,3, 25-37.

    Google Scholar 

  • Strzyszcz Z., Magiera T and Heller F., 1996. The influence of industrial immisions on the magnetic susceptibility of soils in Upper Silesia. Stud. Geophys. Geod., 40, 276-286.

    Article  Google Scholar 

  • Strzyszcz Z. and Magiera T., 1998. Magnetic susceptibility and heavy metals contamination in soils of southern Poland. Phys. Chem. Earth, 23, 1127-1131.

    Article  Google Scholar 

  • Sutherland R.A., 2003. Lead in grain size fractions of road-deposited sediment. Environ. Pollut., 121, 229-237.

    Article  Google Scholar 

  • Tauxe L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice. Rev. Geophys., 31, 319-354.

    Article  Google Scholar 

  • Thompson R. and Oldfield F., 1986. Environmental Magnetism. Allen & Unwin, 225 pp.

  • Vassilev S.V., 1992. Phase mineralogy studies of solid waste products from coal burning at some Bulgarian thermoelectric power plants. Fuel, 71, 625-633.

    Article  Google Scholar 

  • Walkley A. and Black I.A., 1934. An examination of the method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci., 37, 29-38.

    Article  Google Scholar 

  • Zhang W. and Yu L., 2002. Relationships between magnetic properties and heavy metals in intertidal sediments of the Yangtze Estuary, China. Quaderni di Geofisica,26, 195-197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaparro, M., Bidegain, J., Sinito, A. et al. Relevant Magnetic Parameters and Heavy Metals from Relatively Polluted Stream Sediments - Vertical and Longitudinal Distribution Along a Cross-City Stream in Buenos Aires Province, Argentina. Studia Geophysica et Geodaetica 48, 615–636 (2004). https://doi.org/10.1023/B:SGEG.0000037474.08544.8e

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SGEG.0000037474.08544.8e

Navigation