Skip to main content
Log in

Evolution of a Martensite Packet under Multicycle Fatigue Loading

  • Published:
Russian Physics Journal Aims and scope

Abstract

The methods of diffraction electron microscopy of thin metal foils are used to study the defect substructure and the phase content of preliminary quenched Fe–0.60C–1Mn–2Si steel subjected to multicycle fatigue tests. It is demonstrated that steel loading is accompanied by the initial stage of dynamic recrystallization. One of the mechanisms of forming dynamic recrystallization centers is the pair coalescence of packet martensite crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. J. Kennedy, Processes of Creep and Fatigue in Metals [Russian translation], Metallurgiya, Moscow (1965).

    Google Scholar 

  2. V. F. Terent'ev, Fatigue of Metallic Materials [in Russian], Nauka, Moscow (2002).

  3. O. V. Sosnin, V. E. Gromov, and É. V. Kozlov, Electrostimulated Small-Cycle Fatigue [in Russian], Nedra Communications LTD, Moscow (2000).

    Google Scholar 

  4. O. V. Sosnin, Evolution of Structural and Phase States of Austenitic Steels under Fatigue [in Russian], Nauka, Novosibirsk (2002).

    Google Scholar 

  5. V. G. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  6. Yu. N. Petrov, Defects and Diffusionless Transformations in Steel [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  7. V. G. Sorokin, ed., Brands of Steels and Alloys [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  8. A. M. Glauert, ed., Practical Methods in Electron Microscopy [Russian translation], Mashinostroenie, Moscow (1980).

    Google Scholar 

  9. K. S. Chernyavskii, Stereology in Metallography [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  10. K. W. Andrews, D. J. Dyson, and S. R. Keown, Interpretation of Electron Diffraction Patterns [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  11. Yu. G. Andreev, L. N. Devchenko, E. V. Shelekhov, and M. A. Shtremel', Dokl. Akad. Nauk SSSR, 237, No. 3, 574–576 (1977).

    Google Scholar 

  12. Yu. F. Ivanov and É. V. Kozlov, Fiz. Met. Metalloved., No. 11, 202–205 (1991).

    Google Scholar 

  13. Yu. F. Ivanov, Fiz. Met. Metalloved., No. 9, 57–63 (1992).

  14. A. R. Marder and G. Krauss, in: Proc. 2 nd Int. Conf. on Strength of Met. and A11oys, Vol. 3 (1970), pp. 822–823.

    Google Scholar 

  15. S. A. Apple, R. N. Caron, and G. Krauss, Metall. Trans., 5, No. 3, 593–599 (1974).

    Google Scholar 

  16. M. L. Bernshtein, L. M. Kaputkina, and S. D. Prokoshkin, Tempering of Steel [in Russian], Publishing House of Moscow Institute of Steels and Alloys, Moscow (1997).

    Google Scholar 

  17. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Structure of Thermally Treated Steel [in Russian], Metallurgiya, Moscow (1994).

    Google Scholar 

  18. G. Thomas and B. V. N. Rao, in: Rep. Int. Conf. ICOMAT-77, Kiev (1978), pp. 57–64.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, Y.F., Sosnin, O.V., Suchkova, E.Y. et al. Evolution of a Martensite Packet under Multicycle Fatigue Loading. Russian Physics Journal 46, 1181–1185 (2003). https://doi.org/10.1023/B:RUPJ.0000028143.30810.17

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUPJ.0000028143.30810.17

Keywords

Navigation