Skip to main content
Log in

Martensitic transformations and the evolution of the defect microstructure of metastable austenitic steel during severe plastic deformation by high-pressure torsion

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

It has been shown that, in metastable austenitic Fe–18Cr–10Ni–Ti steel, under conditions of torsion under pressure, local reversible (forward plus reverse) (γ → α′ → γ) martensitic transformations can occur, which are one of the mechanisms of the formation of nanostructured states. An increase in the rotation rate, which leads to an increase in the deformation temperature, stimulates the reverse (α′ → γ) transformation. The evolution of the structural and phase states is represented as the following sequence: (1) mechanical twinning; (2) nucleation of martensitic plates in the microtwinned structure of the austenite with the formation of two-phase (γ + α′) structures, packet α′ martensite, and structural states with a high curvature of the crystal lattice; (3) reverse (α′ → γ)-transformations; and (4) the fragmentation of nanosized crystals via the formation of a nanotwinned structure in the austenite and of a nanoscale banded structure of the ε martensite in the α′ martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov,” Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103–189 (2000).

  2. C. X. Huang, G. Yang, B. Deng, S. D. Wu, S. X. Li, and Z. F. Zhang, “Formation mechanism of nanostructures in austenitic stainless steel during equal channel angular pressing,” Philos. Mag. 87, 4949–4971 (2007).

    Article  Google Scholar 

  3. J. G. Li, M. Umemoto, Y. Todaka, K. Fujisaku, and K. Tsuchiya, “The dynamic phase transformation and formation of nanocrystalline structure in SUS304 austenitic stainless steel subjected to high pressure torsion,” Rev. Adv. Mater. Sci. 18, 577–582 (2008).

    Google Scholar 

  4. R. Langeborg, “The martensite transformation in 18% Cr–8% Ni steels,” Acta Metall. 12, 823–843 (1964).

    Article  Google Scholar 

  5. I. Yu. Litovchenko, A. N. Tyumentsev, Yu. P. Pinzhin, S. L. Girsova, V. A. Nesterenkov, S. V. Ovchinnikov, R. D. Strokatov, and N. A. Dubovik, “Special features of crystal lattice reorientation and the mechanism of strain localization in high-nitrided austenite steels under phase instability in nonuniform stress fields,” Phys. Mesomech. 3, 5–13 (2000).

    Google Scholar 

  6. A. N. Tyumentsev, I. Yu. Litovchenko, Yu. P. Pinzhin, A. D. Korotaev, N. S. Surikova, S. L. Girsova, and V. A. Nesterenkov, “A new mechanism of localization of deformation in austenitic steels: 1. The model of nonequilibrium phase (martensitic) transformations in fields of high local stresses,” Phys. Met. Metallogr. 95, 186–195 (2003).

    Google Scholar 

  7. A. N. Tyumentsev, I. Yu. Litovchenko, Yu. P. Pinzhin, A. D. Korotaev, S. L. Girsova, and V. A. Nesterenkov, “A new mechanism of localization of deformation in austenitic steels: 2. Effect of twinning on the reorientation regularities of the crystal lattice in localized deformation bands,” Phys. Met. Metallogr. 95, 291–299 (2003).

    Google Scholar 

  8. I. Yu. Litovchenko, A. N. Tyumentsev, N. V. Shevchenko, and A. V. Korznikov, “Evolution of structural and phase states at large plastic deformations of an austenitic steel 17Cr–14Ni–2Mo,” Phys. Met. Metallogr. 112, 412–423 (2011).

    Article  Google Scholar 

  9. I. Yu. Litovchenko, A. N. Tyumentsev, M. I. Zahozheva, and A. V. Korznikov, “Direct and reverse martensitic transformation and formation of nanostructured states during severe plastic deformation of metastable austenitic stainless steel,” Rev. Adv. Mater. Sci. 31, 47–53 (2012).

    Google Scholar 

  10. I. Yu. Litovchenko, A. N. Tyumentsev, and A. V. Korznikov, “Reversible martensitic transformation produced by severe plastic deformation of metastable austenitic steel,” Mater. Sci. Forum 738–739, 491–495 (2013).

    Article  Google Scholar 

  11. I. Yu. Litovchenko, A. N. Tyumentsev, and E. P. Naiden, “Peculiarities of martensite transformations and evolution of defect microstructure in metastable austenitic steel rolled at room temperature,” Fiz. Mezomekh. 17, 31–42 (2014).

    Google Scholar 

  12. V. Yu. Kreslin and E. P. Naiden, “Automatic complex for a study of the characteristics of hard magnetic materials,” Instrum. Exp. Tech. 45, 55–57 (2002).

    Article  Google Scholar 

  13. K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L. F. Zhang, H. Kikuchi, K. Ara, and M. Sato, “Magnetic measurements of martensitic transformation in austenitic stainless steel after room temperature rolling,” J. Mater. Sci. 39, 85–97 (2004).

    Article  Google Scholar 

  14. A. N. Tyumentsev, and I. A. Ditenberg, “Structural states with high curvature of crystal lattice in submicrocrystalline and nanoicrystalline metallic materials,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 26–36 (2011).

    Google Scholar 

  15. A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, “Lattice curvature evolution in metal materials on meso- and nanostructural scales of plastic deformation,” Phys. Mesomech. 16, 319–334 (2013).

    Article  Google Scholar 

  16. A. M. Glezer, “A new approach to a description of structural–phase transformations under a severe plastic deformation,” Russ. Phys. J. 51, 480–491 (2008).

    Article  Google Scholar 

  17. X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, and Y. T. Zhu, “Deformation twins in nanocrystalline Al,” Appl. Phys. Lett. 83, 5062–5064 (2003).

    Article  Google Scholar 

  18. Hirth, J.P. and Lothe, J., Theory of Dislocations, (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  19. A. N. Tyumentsev, I. Yu. Litovchenko, Yu. P. Pinzhin, and N. V. Shevchenko, “Atomic models of the nucleation of dislocations and mechanical twinning in FCC crystals,” Phys.-Dokl. 50, 401–405 (2005).

    Article  Google Scholar 

  20. A. N. Tyumentsev and I. Yu. Litovchenko, “Models of dislocation formation and mechanical twinning by local reversible martensitic transformations in FCC nanocrystals,” Advan. Mater. Res. 1013, 234–241 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Litovchenko.

Additional information

Original Russian Text © I.Yu. Litovchenko, A.N. Tyumentsev, S.A. Akkuzin, E.P. Naiden, A.V. Korznikov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 8, pp. 875–884.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litovchenko, I.Y., Tyumentsev, A.N., Akkuzin, S.A. et al. Martensitic transformations and the evolution of the defect microstructure of metastable austenitic steel during severe plastic deformation by high-pressure torsion. Phys. Metals Metallogr. 117, 847–856 (2016). https://doi.org/10.1134/S0031918X16080093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16080093

Keywords

Navigation