Skip to main content
Log in

Dynamic Intramolecular Rearrangements with Proton Transfer in Methanimine Oxide

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The structures of possible intermediates and transition states on the potential energy surface for the isomerization of methanimine oxide into formamide were determined by UHF/6-311G(3d) quantum-chemical calculations. Two possible reaction channels were revealed. The same processes were studied by the direct molecular mechanics method which also revealed two reaction channels. The time range of the examined dynamic processes was estimated at 90–300 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zewail, A.H., Femtochemistry: Ultrafast Dynamics of the Chemical Bond. Singapore: World Scientific, 1994, vols. 1, 2.

    Google Scholar 

  2. Femtosecond Chemistry, Manz, J. and Woste, L., Eds., Weinheim: VCH, 1995.

    Google Scholar 

  3. Zhong, D., Diau, E.W.-G., Bernhardt, T.M., De Feyter, S., Roberts, J.D., and Zewail, A.H., Chem. Phys. Lett., 1998, vol. 298, p. 129.

    Google Scholar 

  4. Herek, J.L., Materny, A., and Zewail, A.H., Chem. Phys. Lett., 1994, vol. 228, p. 15.

    Google Scholar 

  5. Dietz, H. and Engel, V., Chem. Phys. Lett., 1996, vol. 255, p. 258.

    Google Scholar 

  6. Andersson, L.M., Karlsson, H.O., Goscinski, O., Berg, L.-E., Beutter, M., and Hansson, T., Chem. Phys., 1999, vol. 241, p. 43.

    Google Scholar 

  7. Sarkisov, O.M., Tovbin, D.V., Lozovoy, V.V., Gos-tev, F.E., Titov, A.A., Antipin, S.A., and Uman-skiy, S.Ya., Chem. Phys. Lett., 1999, vol. 303, p. 458.

    Google Scholar 

  8. Lozovoy, V.V., Antipin, S.A., Gostev, F.E., Ti-tov, A.A., Tovbin, D.V., Sarkisov, O.M., Vetchin-kin, A.S., and Umanskiy, S.Ya., Chem. Phys. Lett., 1998, vol. 284, p. 221.

    Google Scholar 

  9. Zhang, J.Z., Schwartz, B.J., King, J.C., and Harris, C.B., J. Am. Chem. Soc., 1992, vol. 114, p. 10921.

    Google Scholar 

  10. Felker, P.M., Lambert, Wm.R., and Zewail, A.H., J. Chem. Phys., 1982, vol. 77, p. 1603.

    Google Scholar 

  11. Antipin, S.A., Petrukhin, A.N., Gostev, F.E., Marev-tsev, V.S., Titov, A.A., Barachevsky, V.A., Stro-kach, Yu.P., and Sarkisov, O.M., Chem. Phys. Lett., 2000, vol. 331, p. 378.

    Google Scholar 

  12. Dzhemesyuk, O.A., Antipin, S.A., Gostev, F.E., Fedo-rovich, I.B., Sarkisov, O.M., and Ostrovskii, M.A., Dokl. Ross. Akad. Nauk, 2002, vol. 382, p. 699.

    Google Scholar 

  13. Minkin, V.I., Simkin, B.Ya., and Minyaev, R.M., Teoriya stroeniya molekul (Theory of Molecular Structure), Rostov-on-Don: Feniks, 1997, p. 558.

    Google Scholar 

  14. Minyaev, R.M., Usp. Khim., 1994, vol. 63, p. 939.

    Google Scholar 

  15. Car, R. and Parinello, M., Phys. Rev. Lett., 1985, vol. 55, p. 2471.

    Google Scholar 

  16. Marx, D. and Huter, J., Ab initio Molecular Dynamics: Theory and Implementation in Modern Methods and Algorithms of Quantum Chemistry, Grotendorst, J., Ed., Julich, 2000, p. 149.

  17. Tuckerman, E., Ungar, P.J., von Rosenvinge, T., and Klein, M.L., J. Phys. Chem., 1996, vol. 100, p. 12788.

    Google Scholar 

  18. Aida, M., Yamataka, H., and Dupuis, M., Theor. Chem. Acc., 1999, vol. 102, p. 262.

    Google Scholar 

  19. Skokov, S. and Wheeler, R.A., J. Phys. Chem. A, 2000, vol. 104, p. 6314.

    Google Scholar 

  20. Truhlar, D.G., The Reaction Path in Chemistry: Current Approaches and Perspectives, Heidrich, D., Ed., Dord-recht: Kluwer, 1995, p. 229.

    Google Scholar 

  21. Steckler, R., Thurman, G.M., Watts, J.D., and Bart-lett, R.J., J. Chem. Phys., 1997, vol. 106, p. 3926.

    Google Scholar 

  22. Wei, D. and Salahub, D.R., J. Chem. Phys., 1997, vol. 106, p. 6086.

    Google Scholar 

  23. Ishikawa, Y. and Binning, Jr.R.C., Chem. Phys. Lett., 2002, vol. 358, p. 509.

  24. Doubleday, C., Bolton, K., and Hase, W.L., J. Phys. Chem. A, 1998, vol. 102, p. 3648.

    Google Scholar 

  25. Li, G. and Hase, W.L., J. Am. Chem. Soc., 1999, vol. 121, p. 7124.

    Google Scholar 

  26. Zhang, X., Ding, Y., Li, Z., Huang, X., and Sun, Ch., Chem. Phys. Lett., 2000, vol. 330, p. 577.

    Google Scholar 

  27. Li, Sh., Yu, X., Xu, Zh., Li, Z., and Sun, Ch., J. Mol. Struct. (Theochem), 2001, vol. 540, p. 221.

    Google Scholar 

  28. Bolton, K., Hase, W.L., Schlegel, H.B., and Song, R., Chem. Phys. Lett., 1998, vol. 288, p. 621.

    Google Scholar 

  29. Peslherbe, G.H., Wang, H., and Hase, W.L., J. Am. Chem. Soc., 1996, vol. 118, p. 2257.

    Google Scholar 

  30. Splitter, J. and Calvin, M., J. Org. Chem., 1965, vol. 30, p. 3427.

    Google Scholar 

  31. Spence, G.G., Taylor, E., and Buchardt, O., Chem. Rev., 1970, vol. 70, p. 231.

    Google Scholar 

  32. Shinzawa, K. and Tanaka, I., J. Phys. Chem., 1964, vol. 68, p. 1205.

    Google Scholar 

  33. Koyano, K. and Tanaka, I., J. Phys. Chem., 1965, vol. 69, p. 2545.

    Google Scholar 

  34. Koyano, K., Suzuki, H., Mori, Y., and Tanaka, I., Bull. Chem. Soc. Jpn., 1970, vol. 43, p. 3582.

    Google Scholar 

  35. Krishan, K. and Singkh, Kh., Izv. Akad. Nauk SSSR, Ser. Khim., 1974, p. 1404.

  36. Fukui, K., Acc. Chem. Res., 1981, vol. 14, p. 363.

    Google Scholar 

  37. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., El-bert, S.T., Gordon, M.S., Jensen, J.H., Koseki, H., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, A., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Google Scholar 

  38. Frisch, M.J, Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Fores-man, J.B., Cioslowski, J., Stefanov, B.B., Nanayak-kara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen, W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C., and Pople, J.A., Gaussian 94, Revision D, Pittsburgh PA: Gaussian, 1995.

    Google Scholar 

  39. HyperChem 5.0 for Windows, Hypercube, 1994-1995.

  40. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon, 1987, p. 385.

    Google Scholar 

  41. Doubleday, C., Chem. Phys. Lett., 1995, vol. 233, p. 509.

    Google Scholar 

  42. Doubleday, C., Bolton, K., Peslherbe, G.H., and Hase, W.L., J. Am. Chem. Soc., 1996, vol. 118, p. 9922.

    Google Scholar 

  43. Gillespie, R.J., Molecular Geometry, New York: Rein-hold, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminova, R.M., Ermakova, E.A. Dynamic Intramolecular Rearrangements with Proton Transfer in Methanimine Oxide. Russian Journal of Organic Chemistry 40, 837–846 (2004). https://doi.org/10.1023/B:RUJO.0000044547.70022.ee

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUJO.0000044547.70022.ee

Keywords

Navigation