Skip to main content
Log in

Role of water in intramolecular proton transfer reactions of formamide and thioformamide

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A theoretical study of the mechanism of intramolecular proton transfer reactions in formamide and thioformamide is presented; the focus is on the characterization of the role of water in the reactions. The reaction mechanisms was analyzed with the help of energy profiles in the frame of the reaction force analysis and using the reaction electronic flux to characterize the electronic activity that takes place along the reaction. Bader’s quantum theory of atoms in molecules is used to confirm the reaction mechanism and help elucidate the specific role of water. Results at the DFT/B3LYP 6-311G** level of theory show that water catalyzes the proton transfer reaction lowering the activation energy by a factor of two. The reaction force analysis allowed the characterization of activation energies, indicating that in all four reactions, it is mostly due to structural reordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, New York

    Book  Google Scholar 

  2. Bender ML (1971) Mechanisms of homogeneous catalysis from protons to proteins. Wiley, New York

    Google Scholar 

  3. Boutis T (1992) Proton transfer in hydrogen bonded systems. Plenum, New York

    Book  Google Scholar 

  4. Kim Y, Lim S, Kim HL, Kim Y (1999) J Phys Chem A 103:617

    Article  CAS  Google Scholar 

  5. Adamo C, Cossi M, Barone V (1997) J Comput Chem 18:1993

    Article  CAS  Google Scholar 

  6. Zielinski TJ, Poirier RA (1984) J Comput Chem 5:466

    Article  CAS  Google Scholar 

  7. Wang X-C, Nichols J, Feyereisen M, Gutowski M, Boatz J, Haymet ADJ, Simons J (1991) J Phys Chem 95:10419

    Article  CAS  Google Scholar 

  8. Duarte F, Toro-Labbé A (2010) Mol Phys 108:1375

    Article  CAS  Google Scholar 

  9. Hargis JC, Vöhringer-Martinez E, Lee Woodcock H, Toro-Labbé A, Schaefer HF III (2011) J Phys Chem A 115:2650

    Article  CAS  Google Scholar 

  10. Fu A, Li H, Du D, amd Zhou Z (2003) Chem Phys Lett 382:332

    Article  CAS  Google Scholar 

  11. Markova N, Echev VJ (2004) Mol. Struct. (Theochem) 679:195

    Article  CAS  Google Scholar 

  12. Fujiwara S, Kambe N (2005) Top Curr Chem 251:87

    CAS  Google Scholar 

  13. Vöhringer-Martinez E, Toro-Labbé A (2010) J Comput Chem 31:2642

    Article  Google Scholar 

  14. Bai LL, Yan SH, Ma HQ, Bi SW (2011) Comput Theor Chem 964:218

    Article  CAS  Google Scholar 

  15. Toro-Labbé A (1999) J Phys Chem A 103:4398

    Article  Google Scholar 

  16. Gutiérrez-Oliva S, Herrera B, Toro-Labbé A, Chermette H (2005) J Phys Chem A 109:1748

    Article  Google Scholar 

  17. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha M, Murray J (2005) J Chem Sci 117:467

    Article  CAS  Google Scholar 

  18. Rincón E, Jaque P, Toro-Labbé A (2006) J Phys Chem A 110:9478

    Article  Google Scholar 

  19. Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487

    Article  CAS  Google Scholar 

  20. Herrera B, Toro-Labbé A (2007) J Phys Chem A 111:5921

    Article  CAS  Google Scholar 

  21. Echagaray E, Toro-Labbé A (2008) J Phys Chem A 112:11801

    Article  Google Scholar 

  22. Vogt-Geisse S, Toro-Labbé A (2009) J Chem Phys 130:244308

    Article  Google Scholar 

  23. Flores P, Gutiérrez-Oliva S, Silva E, Toro-Labbé A (2010) THEOCHEM 943:121

    Article  Google Scholar 

  24. Duarte F, Toro-Labbé AJ (2011) Chem Phys A 115:3050

    Article  CAS  Google Scholar 

  25. Inostroza-Rivera R, Herrera B, Toro-Labbé A (2014) Phys Chem Chem Phys 16:14489

    Article  CAS  Google Scholar 

  26. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  27. Popelier PLA (2000) Atoms in molecules an introduction. Prentice Hall, Upper Saddle River

    Google Scholar 

  28. Brovarets’ OO, Hovorun DM (2013) J Comput Chem 34:2577–2590

    Article  Google Scholar 

  29. Brovarets’ OO, Zhurakivsky RO, Hovorun DM (2014) J Comput Chem 35:451–466

    Article  Google Scholar 

  30. Bonnet ML, Tognetti V (2011) Chem Phys Lett 511:427–433

    Article  CAS  Google Scholar 

  31. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  32. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  33. Morell C, Tognetti V, Bignon E, Dumont E, Hernandez-Haro N, Herrera B, Grand A, Gutiérrez-Oliva S, Joubert L, Toro-Labbé A (2015) Theor Chem Acc 134:133

    Article  Google Scholar 

  34. Becke A (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  37. Vosko S, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  38. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  39. Schlegel GW, Scuseria HB, Robb GE, Cheeseman MA, Scalmani JR, Barone G, Mennucci V, Petersson B, Nakatsuji GA, Caricato H, Li M, Hratchian X, Izmaylov HP, Bloino AF, Zheng J, Sonnenberg G, Hada JL, Ehara M, Toyota M, Fukuda K, Hasegawa R, Ishida J, Nakajima M, Honda T, Kitao Y, Nakai O, Vreven H, Montgomery T, Peralta JA Jr, Ogliaro JE, Bearpark F, Heyd M, Brothers JJ, Kudin E, Staroverov KN, Kobayashi VN, Normand R, Raghavachari J, Rendell K, Burant A, Iyengar JC, Tomasi SS, Cossi J, Rega M, Millam N, Klene JM, Knox M, Cross JE, Bakken JB, Adamo V, Jaramillo C, Gomperts J, Stratmann R, Yazyev RE, Austin O, Cammi AJ, Pomelli R, Ochterski C, Martin JW, Morokuma RL, Zakrzewski K, Voth VG, Salvador GA, Dannenberg P, Dapprich JJ, Daniels S, Farkas AD, Foresman Ö, Ortiz JB, Cioslowski JV, Fox J, Frisch DJ, Trucks MJ (2009) Gaussian 09 Revision A.1. Gaussian Inc., Wallingford, CT

    Google Scholar 

  40. Keith TA (2015) Aimall (version 15.05.18). TK Gristmill Software, Overland Park

    Google Scholar 

  41. Giri S, Echegaray E, Ayers PW, Nunez AS, Lund F, Toro-Labbé A (2012) J Phys Chem A 116:10015

    Article  CAS  Google Scholar 

  42. Giri S, Inostroza-Rivera R, Herrera B, Nunez AS, Lund F, Toro-Labbé A (2014) J Mol Model 20(9):1–9

    Article  CAS  Google Scholar 

  43. Cerón M, Herrera B, Araya P, Gracia F, Toro-Labbé A (2011) J Mol Model 17:1625

    Article  Google Scholar 

  44. Inostroza-Rivera R, Yahia-Ouahmed M, Tognetti V, Joubert L, Herrera B, Toro-Labbé A (2015) Phys Chem Chem Phys 17:17797

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT through project Nos. 1120093, 1100881 and 1130072. The authors acknowledge financial support from ICM through project No. 120082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Inostroza-Rivera.

Additional information

Published as part of the special collection of articles “CHITEL 2015 - Torino - Italy”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Angel, D., Inostroza-Rivera, R., Gutiérrez-Oliva, S. et al. Role of water in intramolecular proton transfer reactions of formamide and thioformamide. Theor Chem Acc 135, 37 (2016). https://doi.org/10.1007/s00214-015-1774-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1774-8

Keywords

Navigation