Skip to main content
Log in

Kinetics and Mechanism of Monomolecular Heterolysis of Cage-Like Compounds: XVIII. Solvent Effect on the Rate of Heterolysis of 3-Bromocyclohexene. Correlation Analysis of Solvation Effects

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of E1 dehydrobromination of 3-bromocyclohexene in 23 aprotic and 9 protic solvents were studied by the verdazyl technique. The reaction rate is described by the polarity, electrophilicity, and ionizing power parameters of the solvent. Nucleophilicity, polarizability, and cohesion parameters of the solvent do not affect the reaction rate. The effects of equilibrium and nonequilibrium solvation of the transition state are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bentley, T.W. and Llewellyn, G.Y., Prog. Phys. Org. Chem., 1990, vol. 17, p. 121.

    Google Scholar 

  2. Dvorko, G.F., Ponomarev, N.E., and Ponomareva, E.A., Russ. J. Gen. Chem., 1999, vol. 69, p. 1758.

    Google Scholar 

  3. Takeuchi, K., Takasuka, M., Shiba, E., Kinosita, T., Okasaki, T., Abboud, J.-L.M., Notario, R., and Kastano, J. O Am. Chem. Soc., 2000, vol. 122, p. 7351.

    Google Scholar 

  4. Kevill, D.N. and D'Souza, M.Y., J. Phys. Org. Chem., 1992, vol. 5, p. 287.

    Google Scholar 

  5. Richard, J.P., Toteva, M.M., and Amyes, T.L., Org. Lett., 2001, vol.3, p. 2225.

    Google Scholar 

  6. Koppel, I.A. and Palm, V.A., Advances in Linear Free Energy Relationships, Chapmen, N.B. and Shorter, J., Eds., London: Plenum, 1972.

    Google Scholar 

  7. Abraham, M.H., Doherty, R.M., Kamlet, J.M., Harris, J.M., and Taft, R.W., J. Chem. Soc., Perkin Trans. 2, 1987, p. 913.

    Google Scholar 

  8. Farcassin, D., Jahme, J., and Reichardt, C., J. Am. Chem. Soc., 1985, vol. 107, p. 5717.

    Google Scholar 

  9. Dvorko, G.F., Ponomareva, E.A., and Kulik, N.I., Usp. Khim., 1984, vol. 43, p. 948.

    Google Scholar 

  10. Dvorko, G.F., Zaliznyi, V.V., and Ponomarev, N.E., Russ. J. Gen. Chem., 2002, vol. 72, p. 1414.

    Google Scholar 

  11. Dvorko, G.F., Zaliznyi, V.V., and Ponomarev, N.E., Russ. J. Gen. Chem., 2002, vol. 72, p. 1549.

    Google Scholar 

  12. Ponomareva, E.A., Yavorskaya, I.F., Dvorko, G.F., and Kulik, N.I., Zh. Org. Khim., 1990, vol. 26, p. 589.

    Google Scholar 

  13. Dvorko, G.F., Pervishko, T.L., Golovko, N.N., Vasil'-kevich, A.I., and Ponomareva, E.A., Zh. Org. Khim., 1993, vol. 29, p. 1805.

    Google Scholar 

  14. Dvorko, G.F., Pervishko, T.L., Leunov, D.I., and Ponomareva, E.A., Russ. J. Org. Chem., 1999, vol. 35, p. 1611.

    Google Scholar 

  15. Dvorko, G.F., Ponomarev, N.E., and Kulik, N.I., Zh. Obshch. Khim., 1995, vol. 65, p. 1003.

    Google Scholar 

  16. Dvorko, G.F., Vasil'kevich, A.I., and Ponomarev, N.E., Russ. J. Org. Chem., 1997, vol. 33, p. 213.

    Google Scholar 

  17. Vasil'kevich, A.I., Ponomareva, E.A., and Dvorko, G.F., Zh. Org. Khim., 1990, vol. 26, p. 2267.

    Google Scholar 

  18. Dvorko, G.F. and Ponomar'ova, E.O., Ukr. Khim. Zh., 1993, vol. 59, p. 1190.

    Google Scholar 

  19. Gorodyskii, V.A. and Bakhteev, N.G., Teor. Eksp. Khim., 1971, vol. 7, p. 631.

    Google Scholar 

  20. Kim, H.J. and Hynes, J.J., J. Am. Chem. Soc., 1992, vol. 114, p. 10508.

    Google Scholar 

  21. Pross, A. and Saik, S.S., Acc. Chem. Res., 1983, vol. 16, p. 363.

    Google Scholar 

  22. Mathis, J.R., Kim, H.J., and Hynes, J.J., J. Am. Chem. Soc., 1993, vol. 115, p. 8248.

    Google Scholar 

  23. Jencks, W.P., Chem. Soc. Rev., 1981, vol. 10, p. 345.

    Google Scholar 

  24. Kaatre, U., Pottel, P., and Schumacher, A., J. Phys. Chem., 1992, vol. 96, p. 6017.

    Google Scholar 

  25. Richard, J.P. and Tsuji, Y., J. Am. Chem. Soc., 2000, vol.122, p. 3963.

    Google Scholar 

  26. Ulrich, Z., Chem.-Ztg., 1984, vol. 108, p. 531.

    Google Scholar 

  27. Antenius, M. and Peeters, H.L., J. Org. Chem., 1975, vol. 40, p. 307.

    Google Scholar 

  28. Ingold, C.K., Structure and Mechanism in Organic Chemistry, Ithaca: Cornell Univ., 1969, 2nd ed.

    Google Scholar 

  29. Winstein, S., Appel, B., Baker, K., and Diaz, L. J. Chem. Soc., Spec. Publ., 1965, no. 19, p. 109.

    Google Scholar 

  30. Raber, D.J., Harris, J.M., and Schleyer, P.v.R., Ions and Ion Pairs in Organic Reactions, Szwarc, M., Ed., New York: Wiley, 1974, vol. 2, p. 248.

    Google Scholar 

  31. Yabe, T. and Kochi, J.K., J. Am. Chem. Soc., 1992, vol. 114, p. 4491.

    Google Scholar 

  32. Dvorko, G.F. and Ponomarev, N.E., Russ. J. Gen. Chem., 1995, vol. 65, p. 111.

    Google Scholar 

  33. Gumaschi, P., Gamba, A., and Simonetta, M., J. Chem. Soc., Perkin Trans. 2, 1977, p. 162.

    Google Scholar 

  34. Salem, L., Electrons in Chemical Reactions: First Principles, New York: Wiley, 1982.

    Google Scholar 

  35. Moelwyn-Hughes, E.A., The Chemical Statics and Kinetics of Solutions, London: Academic, 1971.

    Google Scholar 

  36. Pohoriele, A. and Pratt, R.L., J. Am. Chem. Soc., 1990, vol. 112, p. 5066.

    Google Scholar 

  37. Reichardt, C., Solvents and Solvent Effects in Organic Chemistry, Weinheim: VCH, 1988, 2nd ed.

    Google Scholar 

  38. Dvorko, G.F., Ponomareva, E.A., and Pervishko, T.L., Reakts. Sposobn. Org. Soedin., 1979, vol. 16, p. 113.

    Google Scholar 

  39. Queen, A., Can. J. Chem., 1979, vol. 57, p. 2646.

    Google Scholar 

  40. Dvorko, G.F. and Cherevach, T.V., Zh. Obshch. Khim., 1988, vol. 58, p. 1371.

    Google Scholar 

  41. Ponomarev, N.E., Yakhimovich, R.I., and Kulik, N.I., Zh. Obshch. Khim., 1988, vol. 58, p. 1101.

    Google Scholar 

  42. Margulescu, I.G. and Demetrescu, I., Rev. Chim. (Bucharest), 1973, vol. 18, p. 335.

    Google Scholar 

  43. Ceccon, A., Papa, I., and Fava, A., J. Am. Chem. Soc., 1966, vol. 88, p. 4643.

    Google Scholar 

  44. Okamoto, K., Pure Appl. Chem., 1984, vol. 56, p. 1798.

    Google Scholar 

  45. Allen, A.D., Kanagasabapathy, V.M., and Tidwell, T.T.,J. Am. Chem. Soc., 1985, vol. 107, p. 4513.

    Google Scholar 

  46. Hunziker, P. and Mullner, F.X., Helv. Chim. Acta, 1958, vol. 41, p. 70.

    Google Scholar 

  47. Dvorko, G.F., Cherevach, T.V., Kulik, N.I., and Ponomarev, N.E., Russ. J. Gen. Chem., 1994, vol. 64, p. 881.

    Google Scholar 

  48. Dvorko, G.F., Zhovtyak, V.N., and Evtushenko, N.Yu., Zh. Obshch. Khim., 1989, vol. 59, p. 1600.

    Google Scholar 

  49. Kovtunenko, V.O., Zagal'na stereokhimiya (General Stereochemistry), Ki?v: Nevtes, 2001.

  50. Yakhimovich, R.I., Dvorko, G.F., Ponomareva, E.A., and Yavorskaya, I.F., Zh. Obshch. Khim., 1983, vol. 53, p. 2375.

    Google Scholar 

  51. Yakhimovich, R.I., Khimiya vitaminov D (Chemistry of Vitamins D), Kiev: Naukova Dumka, 1978.

  52. Ponomar'ov, M.E., Stamb?rs'kii, M.V., and Dvorko, G.F., Dopov. Nat. Akad. Navuk Ukra?ni, 1997, no. 6, p. 154.

    Google Scholar 

  53. Ponomarev, N.E., Stambirskii, M.V., and Dvorko, G.F., Russ. J. Gen. Chem., 1998, vol. 68, p. 98.

    Google Scholar 

  54. Ponomarev, N.E., Stambirskii, M.V., and Dvorko, G.F., Russ. J. Gen. Chem., 2002 vol. 72, p. 79.

    Google Scholar 

  55. Dvorko, G.F. and Ponomareva, E.A., Usp. Khim., 1991, vol. 60, p. 2089.

    Google Scholar 

  56. Pal'm, V.A., Osnovy kolichestvennoi teorii organicheskikh reaktsii (Principles of the Quantitative Theory of Organic Reactions), Leningrad: Khimiya, 1977.

    Google Scholar 

  57. Kamlet, M.J. and Taft, R.W., J. Chem. Soc., Perkin Trans. 2, 1979, p. 349.

    Google Scholar 

  58. Makitra, R.G. and Pirig, Ya.I., Zh. Obshch. Khim., 1986, vol. 56, p. 657.

    Google Scholar 

  59. Marcus, Y., Chem. Soc. Rev., 1993, vol. 22, p. 409.

    Google Scholar 

  60. Abboud, J.-L.M. and Notario, R., Pure Appl. Chem., 1999, vol. 71, p. 645.

    Google Scholar 

  61. Kafarov, V.V., Metody kibernetiki v khimii i khimicheskoi tekhnologii (Cybernetics Methods in Chemistry and Chemical Technology), Moscow: Khimiya, 1971.

    Google Scholar 

  62. Okamoto, K., Nitta, I., Dohi, M., and Shingu, H., Bull. Chem. Soc. Jpn., 1971, vol. 44, p. 320.

    Google Scholar 

  63. Kinoshita, T., Ueno, I., Ikai, K., Fujiwara, M., and Okamoto, K., Bull. Chem. Soc. Jpn., 1988, vol. 61, p. 3273.

    Google Scholar 

  64. Isaacs, N.S., Physical Organic Chemistry, Harlow: Longman Scientific & Technical, 1992.

  65. Maskill, H., The Physical Basis of Organic Chemistry, New York: Oxford Univ., 1993.

    Google Scholar 

  66. Fujio, M, Goto, M., Funatsu, Y., Yoshino, T., Saeki, Y., Katsugi, K., and Tsuno, Y., Bull. Chem. Soc. Jpn., 1992, vol. 65, p. 846.

    Google Scholar 

  67. Nair, W.R. and Nair, S.V., Indian J. Chem., Sect. A, 1978, vol. 16, p. 984.

    Google Scholar 

  68. Kuhn, R. and Trischmann, H., Monatsh. Chem., 1964, vol. 95, p. 457.

    Google Scholar 

  69. Weissberger, A., Proskauer, E.S., Riddick, J.A., and Toops, E.E., Jr., Organic Solvents: Physical Properties and Methods of Purification, New York: Intersci., 1955, 2nd ed.

    Google Scholar 

  70. Dauben, H. and McCoy, L., J. Am. Chem. Soc., 1959, vol. 81, p. 4863.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomarev, N.E., Stambirskii, M.V., Dvorko, G.F. et al. Kinetics and Mechanism of Monomolecular Heterolysis of Cage-Like Compounds: XVIII. Solvent Effect on the Rate of Heterolysis of 3-Bromocyclohexene. Correlation Analysis of Solvation Effects. Russian Journal of Organic Chemistry 40, 489–496 (2004). https://doi.org/10.1023/B:RUJO.0000036068.58478.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUJO.0000036068.58478.e4

Keywords

Navigation