Skip to main content
Log in

Instability of Repetitive Units of Foreign Centromeric Satellite DNA in Transgenic Mice and Transfected Cells

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Cytologically detectable instability of centromeric satellite DNA may cause hereditary disorders in human. To study the mechanisms of such instability, two transgenic mouse lines and 11 clones of transfected F9 mouse embryonic teratocarcinoma cells were obtained with the 3.8-kb repetitive unit (Sat) of Bos taurus satellite DNA IV. Intergeneration and somatic instability of exogenous satellite DNA (satDNA) was observed in transgenic mice and transfected cells as a change in nucleotide sequence of an internal Sat region approximately 1000 bp in size. Since Sat was in the hemizygous state in both cases by the experimental protocol, the instability was attributed to intra-allelic processes. Intergeneration instability probably took place in the premeiotic period of gametogenesis or in early embryo development and led to prenatal death of transgenic embryos after at least one generation. No direct or inverse correlation was observed between methylation and instability of Sat. The results testify that submicroscopic changes in highly repetitive noncoding DNA sequences may already affect the genome function in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Amarger, V., Gauguier, D., Verle, M., et al., Analysis of Distribution in the Human, Pig and Rat Genomes Points toward a General Subtelomeric Origin of Minisatellite Structures, Genomics, 1998, vol. 52, pp. 62–71.

    Google Scholar 

  2. Bois, P.R.J., Hypermutable Minisatellites, a Human Affair?, Genomics, 2003, vol. 81, pp. 349–355.

    Google Scholar 

  3. McMurray, C.T., DNA Secondary Structure: A Common and Causative Factor for Expansion in Human Disease, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 1823–1825.

    Google Scholar 

  4. Vergnaud, J. and Denoeud, T., Minisatellites: Mutability and Genome Architecture, Genome Res., 2000, vol. 10, pp. 899–907.

    Google Scholar 

  5. Buard, J., Collick, A., Brown, J., and Jeffreys, A.J., Somatic Versus Germ Line Mutation Processes at Minisatellite CEB1 (D2S90) in Human and Transgenic Mice, Genomics, 2000, vol. 65, pp. 95–103.

    Google Scholar 

  6. Stead, J.D. and Jeffreys, A.J., Allele Diversity and Germ Line Mutation at the Insulin Minisatellite, Hum. Mol. Genet., 2000, vol. 9, pp. 713–723.

    Google Scholar 

  7. Kelly, R., Bulfield, G., Collick, A., et al., Characterization of Highly Unstable Mouse Minisatellite Locus: Evidence for Somatic Mutation during Early Development, Genomics, 1989, vol. 5, pp. 844–856.

    Google Scholar 

  8. Gibbs, M., Collick, A., Kelly, R.G., and Jeffreys, A.J., A Tetranucleotide Repeat Mouse Minisatellite Displaying Substantial Somatic Instability during Early Preimplantation Development, Genomics, 1993, vol. 17, pp. 121–128.

    Google Scholar 

  9. Gaitskhoki, V.S. and Patkin, E.L., Satellite DNAs and Diseases-Possible Mechanisms: Trinucleotide Repeats, Russ. J. Genet., 2000, vol. 36, no. 7, pp. 713–728.

    Google Scholar 

  10. Bennett, S.T., Lucassen, A.M., Gough, S.C.L., et al., Susceptibility to Human Type 1 Diabetes at IDDM2 Is Determined by Tandem Repeat Variation at the Insulin Gene Minisatellite Locus, Nat. Genet., 1995, vol. 9, pp. 284–292.

    Google Scholar 

  11. Virtaneva, K., Amato, E.D., Miao, J., et al., Unstable Minisatellite Expansion Causing Recessively Inherited Myoklonus Epilepsy, EPM1, Nat. Genet., 1997, vol. 15, pp. 393–396.

    Google Scholar 

  12. Patkin, E.L. and Gaitskhoki, V.S., Satellite DNAs and Diseases-Possible Mechanisms: Minisatellite Instability, Russ. J. Genet., 2000, vol. 36, no. 9, pp. 989–993.

    Google Scholar 

  13. Ji, W., Hernandez, R., Zhang, X.-Y., et al., DNA Demethylation and Pericentromeric Rearrangements of Chromosome 1, Mutat. Res., 1997, vol. 379, pp. 33–41.

    Google Scholar 

  14. Xu, G.-L., Bestor, T.H., Bourc'his, D., et al., Chromosome Instability and Immunodeficiency Syndrome Caused by Mutations in a DNA Methyltransferase Gene, Nature, 1999, vol. 402, pp. 187–191.

    Google Scholar 

  15. Barbasa, A.C.C., Otto, P.A., and Wianna-Morgante, A.M., Replication Timing of Homologous a-Satellite DNA in Roberts Syndrome, Chromosome Res., 2000, vol. 8, pp. 645–650.

    Google Scholar 

  16. Jeanpierre, M., Turleau, C., Aurias, A., et al., An Embryonic-like Methylation Pattern of Classical Satellite DNA Is Observed in ICF Syndrome, Hum. Mol. Genet., 1993, vol. 2, pp. 731–735.

    Google Scholar 

  17. Gisselsson, D., Hoglund, M., Mertens, F., and Mandahal, N., Variable Stability of Chromosomes Containing Amplified a-Satellite Sequences in Human Mesenchymal Tumors, Chromosoma, 1999, vol. 108, pp. 271–277.

    Google Scholar 

  18. Nijman, I.J. and Lenstra, J.A., Mutation and Recombination in Cattle Satellite DNA: A Feedback Model for the Evolution of Satellite DNA Repeats, J. Mol. Evol., 2001, vol. 51, pp. 361–371.

    Google Scholar 

  19. Smirnov, A.F., Pavlova, V.A., Sleptsov, M.K., and Steklenev, E.P., The Variability of Satellite DNA II and IV in Cattle and Some Representatives of Subfamily Bovinae and Their Hybrids, Russ. J. Genet., 1996, vol. 32, no. 9, pp. 1096–1101.

    Google Scholar 

  20. Harrington, J.J., Van Bokkelen, G., Mays, R.W., et al., Formation of De Novo Centromeres and Construction of First-Generation Human Artificial Microchromosomes, Nat. Genet., 1997, vol. 15, pp. 345–355.

    Google Scholar 

  21. Gurney, M.E., What Transgenic Mice Tell Us about Neurodegenerative Disease, BioEssay, 2000, vol. 22, pp. 297–304.

    Google Scholar 

  22. Baskaran, S., Datta, S., Mandal, A., et al., Instability of CGG Repeats in Transgenic Mice, Russ. J. Genet., 2002, vol. 80, pp. 930–935.

    Google Scholar 

  23. Popov, A.V., Smirnov, A.F., Suchkova, I.O., et al., Formation of Heterochromatin Regions in Transgenic Mice, Genetika (Moscow), 2000, vol. 36, no. 8, pp. 1119–1125.

    Google Scholar 

  24. Skowronski, J., Plucienniczak, A., Bednarek, A., and Jaworski, J., Bovine 1.709 Satellite: Recombination Hotspots and Dispersed Repeated Sequences, J. Mol. Biol., 1984, vol. 177, pp. 399–416.

    Google Scholar 

  25. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989, vol. 1, pp. 182–184.

    Google Scholar 

  26. Promega Protocols and Applications Guide, Medison: Promega, 1990, pp. 40–41.

  27. Vaisman, B.P. and Golinskii, G.F., A Technique of Microinjecting Cloned DNA Fragments (Foreign Genes) in the Nucleus of Mouse Fertilized Eggs, Obshchie zakonomernosti i kontroliruyushchie mekhanizmy rannego embriogeneza mlekopitayushchikh v norme i patologii. Sbornik nauchnykh trudov (General Regularities and Control Mechanisms of Mammalian Early Embryo Development in Norm and Pathology: A Collection of Works), Dyban, A.P., Ed., Leningrad: Meditsina, 1985, pp. 108–113.

    Google Scholar 

  28. Transcription and Translation: A Practical Approach, Hames, B.D. and Higgins, S.J., Eds., Oxford: IRL, 1984.

    Google Scholar 

  29. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  30. Erlich, A.H., PCR Technology: Principles and Applications for DNA Amplification, New York: Stockton, 1989.

    Google Scholar 

  31. Saluz, H. and Jost, J.-P., Major Techniques to Study DNA Methylation, DNA Methylation: Molecular Biology and Biological Significance, Jost, J.P. and Saluz, H.P., Eds., Basel: Birkhauser, 1993, pp. 11–26.

    Google Scholar 

  32. Boan, F., Rodriguez, J.M., and Gomez-Marquez, J., A Non-Hypervariable Human Minisatellite Strongly Stimulates In Vitro Intramolecular Homologous Recombination, J. Mol. Biol., 1998, vol. 278, pp. 499–505.

    Google Scholar 

  33. Wahls, W.P. and Moore, P.D., Recombination Hotspot Activity of Hypervariable Minisatellite DNA Requires Minisatellite DNA-Binding Proteins, Som. Cell Mol. Genet., 1998, vol. 24, pp. 41–51.

    Google Scholar 

  34. Ohshima, K. and Wells, R.D., Hairpin Formation duringDNA Synthesis: Primer Realignment in Vitro in Triplet Repeats Sequences from Human Hereditary Disease Genes, Proc. Natl. Acad. Sci. USA, 1997, vol. 272, pp. 16798–16806.

    Google Scholar 

  35. Been, M.D., Burgess, R.R., and Champoux, J.J., Nucleotide Sequence Preference at Rat Liver and Wheat Germ Type I DNA Topoisomerase Breakage Sites in Duplex SV40 DNA, Nucleic Acids Res., 1984, vol. 12, pp. 3097–3114.

    Google Scholar 

  36. McFarlane, M. and Wilson, J.B., A Model for the Mechanism of Precise Integration of a Microinjected Transgene, Transgene Res., 1996, vol. 5, pp. 171–177.

    Google Scholar 

  37. Wells, R.D., Molecular Basis of Genetic Instability of Triplet Repeats, J. Biol. Chem., 1996, vol. 271, pp. 2875–2878.

    Google Scholar 

  38. Murti, J.R., Bumbulis, M., and Schimenti, J.C., Gene Conversion between Unlinked Sequences in the Germ Line of Mice, Genetics, 1994, vol. 137, pp. 837–843.

    Google Scholar 

  39. Kislyakova, T.V., Lyanguzova, M.S., Strunnikova, M.A., et al., Noninduced Single-Strand Breaks in DNA of F9 Mouse Tetatocarcinoma Cells, Tsitologiya, 2000, vol. 42, no. 11, pp. 1060–1068.

    Google Scholar 

  40. Jeffreys, A.J. and Neuman, R., Somatic Mutation Processes at a Human Minisatellite, Hum. Mol. Genet., 1997, vol. 6, pp. 129–136.

    Google Scholar 

  41. Bois, P., Stead, J.D.H., Bakshi, S., et al., Isolation and Characterization of Mouse Minisatellites, Genomics, 1998, vol. 50, pp. 317–330.

    Google Scholar 

  42. Lambert, S., Saintigny, Y., Delacote, F., et al., Analysis of Intrachromosomal Homologous Recombination in Mammalian Cells, Using Tandem Repeat Sequences, Mutat. Res., 1999, vol. 433, pp. 159–168.

    Google Scholar 

  43. Debrauwere, H., Buard, J., Tessier, J., et al., Meiotic Instability of Human Minisatellite CEB1 in Yeast Requires DNA Double-Strand Breaks, Nat. Genet., 1999, vol. 23, pp. 367–371.

    Google Scholar 

  44. Butner, K.A. and Lo, C.W., High Frequency DNA Rearrangements Associated with Mouse Centromeric Satellite DNA, J. Mol. Biol., 1986, vol. 187, pp. 547–556.

    Google Scholar 

  45. He, Q., Cederberg, H., Armour, J.A.L., et al., Cis-Regulation of Interallelic Exchanges in Mutation at Human Minisatellite MS205 in Yeast, Gene, 1999, vol. 232, pp. 143–153.

    Google Scholar 

  46. Imai, H., Nakagama, H., Komatsu, K., et al., Minisatellite Instability in Severe Combined Immunodeficiency Mouse Cells, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, p. 10817.

    Google Scholar 

  47. Haber, J.E., Recombination: Frank View of Exchanges and Vice Versa, Curr. Opin. Cell Biol., 2000, vol. 12, pp. 286–292.

    Google Scholar 

  48. Hamada, T., Sasaki, H., Seki, R., and Sasaki, Y., Mechanism of Chromosomal Integration of Transgenes in Microinjected Mouse Eggs: Sequence Analysis of Genome-Transgene and Transgene-Transgene Junctions at Two Loci, Gene, 1993, vol. 128, pp. 197–202.

    Google Scholar 

  49. Yoder, J.A., Walsh, C.P., and Bestor, T.H., Cytosine Methylation and the Ecology of Intergenomic Parasites, Trends Genet., 1997, vol. 13, no. 8, pp. 335–340.

    Google Scholar 

  50. Hsieh, C.-L. and Lieber, M.R., CpG-Methylated Minichromosomes Become Inaccessible for V(D)J Recombination after Undergoing Replication, EMBO J., 1992, vol. 11, pp. 315–325.

    Google Scholar 

  51. Wu, J. and Issa, J.-P., Harman, J., et al., Expression of an Exogenous Eukaryotic DNA Methyltransferase Gene Induces Transformation of NIH 3T3 Cells, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 8891–8895.

    Google Scholar 

  52. Zacharias, W., Methylation of Cytosine Influences the DNA Structure, DNA Methylation: Molecular Biology and Biological Significance, Jost, J.P. and Saluz, H.P., Basel: Birkhauser, 1993, pp. 27–38.

    Google Scholar 

  53. Noguiez, P., Jaulin, C., Plaz, F., et al., No Relationship between Genetic Instability in Bloom’s Syndrome and DNA Hypomethylation of Some Major Repetitive Sequences, Hum. Genet., 1993, vol. 92, pp. 57–60.

    Google Scholar 

  54. Chen, X., Marriapan, S.V.S., Catasti, P., et al., Hairpins Are Formed by the Single DNA Strands of the Fragile X Triplet Repeats: Structure and Biological Implications, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5199–5203.

    Google Scholar 

  55. Smith, S.S., Laayoun, A., Lingeman, R.G., et al., Hypermethylation of Telomere-like Foldbacks at Codon 12 of the Human c-Ha-ras Gene and the Trinucleotide Repeat of the FMR1 Gene of Fragile X, J. Mol. Biol., 1994, vol. 243, pp. 143–151.

    Google Scholar 

  56. Laayoun, A. and Smith, S.S., Methylation of Slipped Duplexes, Snapbacks and Cruciforms by Human DNA (Cytosine-5) Methyltransferase, Nucleic Acids Res., 1995, vol. 23, pp. 1584–1589.

    Google Scholar 

  57. Mitas, M., Trinucleotide Repeats Associated with Human Disease, Nucleic Acids Res., 1997, vol. 25, pp. 2245–2253.

    Google Scholar 

  58. Heller, H., Kammer, C., Wilgenbus, P., and Doerflier, W., Chromosomal Insertion of Foreign (Adenovirus Type 12, Plasmid, or Bacteriophage ?) DNA Is Associated with Enhanced Methylation of Cellular DNA Segments, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5515–5519.

    Google Scholar 

  59. Arnaud, P., Gaubely, C., Pelissier, T., and Deragon, J.-M., SINE Retroposons Can Be Used in Vivo as Nucleation Centers for De Novo Methylation, Mol. Cell. Biol., 2000, vol. 20, pp. 3434–3441.

    Google Scholar 

  60. Patkin, E.L., Epigenetic Mechanisms for Primary Differentiation in Mammalian Embryos, Int. Rev. Cytol., 2002, vol. 216, pp. 81–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchkova, I.O., Slominska, N.A., Kustova, M.E. et al. Instability of Repetitive Units of Foreign Centromeric Satellite DNA in Transgenic Mice and Transfected Cells. Russian Journal of Genetics 40, 843–852 (2004). https://doi.org/10.1023/B:RUGE.0000039716.10439.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000039716.10439.81

Keywords

Navigation