Skip to main content
Log in

Optimizing Weights of Platinum in the Active Layer of the Cathode of a Hydrogen–Oxygen Fuel Cell with a Solid Polymer Electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The active layer of the cathode of a hydrogen–oxygen fuel cell with a solid polymer electrolyte is computer simulated. The active mass of the electrode consists of substrate grains (agglomerates of carbon particles with Pt particles embedded into them) and grains of a solid polymer electrolyte (Nafion). The substrate grains presumably contain hydrophobic pores, which facilitate the oxygen penetration into the active mass. A calculation of characteristics of such an electrode focuses on the optimization of platinum weights. The principal parameters of the system are concentration and size of grains of substrate and Nafion, Pt concentration in substrate grains, average diameter of hydrophobic pores in substrate grains, and the electrode polarization. The optimum, at a given electrode polarization, electrochemical activity of the active layer, its thickness, and the platinum weight are calculated. A link between these quantities and principal parameters of the active layer is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. General Electric Co., TRP-76, May 1980.

  2. Raistrick, I.D., US Patent no. 4 876 115, 1989; Raistrick, I.D., Proc. of Symp. on Diaphragms, Separators, and Ion Exchange Membranes, Van Zee, J.W., White, R.E., Kinoshita, K., and Burney, H.S., Eds., New York: The Electrochemical Society, 1986, p. 172.

  3. Lemons, R., J. Power Sourcer, 1990, vol. 29, p. 251.

    Google Scholar 

  4. Timonov, A.M., Soros. Obrazov. Zh., 2000, no. 8, p. 69.

  5. Berezina, N.P., Soros. Obrazov. Zh., 2000, no. 9, p. 37.

  6. Acres, G.J.K., J. Power Sources, 2001, vol. 100, p. 60.

    Google Scholar 

  7. Perry, M.L. and Fuller, T.F., J. Electrochem. Soc., 2002, vol. 149, p. 59.

    Google Scholar 

  8. Ticianelli, E.A., Derouin, C.R., and Srinivasan, S.J., J. Electroanal. Chem., 1988, vol. 251, p. 275.

    Google Scholar 

  9. Ticianelli, E.A., Derouin, C.R., Redondo, A., and Srinivasan, S., J. Electrochem. Soc., 1988, vol. 135, p. 2209.

    Google Scholar 

  10. Srinivasan, S., Ticianelli, E.A., Derouin, C.R., and Redondo, A., J. Power Sources, 1988, vol. 22, p. 359.

    Google Scholar 

  11. Wilson, M.S. and Gottesfeld, S., J. Appl. Electrochem., 1992, vol. 22, p. 1.

    Google Scholar 

  12. Wilson, M.S. and Gottesfeld, S., J. Electrochem. Soc., 1992, vol. 139, L28.

    Google Scholar 

  13. Wilson, M.S., US Patents no. 5211984 and 5234777, 1993.

  14. Uchida, M., Aoyama, Y., and Eda, N., and Ohta, A. J. Electrochem. Soc., 1995, vol. 142, p. 4143.

    Google Scholar 

  15. Escribano, S. and Aldebert, P., Solid State Ionics, 1995, vol. 77, p. 318.

    Google Scholar 

  16. Bolwin, K., Gulzow, E., Bevers, D., and Schnurnberger, W., Solid State Ionics, 1995, vol. 77, p. 324.

    Google Scholar 

  17. Wilson, M.S., Valerio, J.A., and Gottesfeld, S., Electrochim. Acta, 1995, vol. 40, p. 355.

    Google Scholar 

  18. Bagotzky, V.S., Osetrova, N.V., and Skundin, A.M., Elektrokhimiya, 2003, vol. 39, p. 1027.

    Google Scholar 

  19. Dhar, H.P., J. Electroanal. Chem., 1993, vol. 357, p. 237.

    Google Scholar 

  20. Costamagna, P. and Srinivasan, S., J. Power Sources, 2001, vol. 102, pp. 242, 253.

    Google Scholar 

  21. Starz, K.A., Auer, E., Lehman, Th., and Zuber, R., J. Power Sources, 1999, vol. 84, p. 167.

    Google Scholar 

  22. Thompson, S.D., Jordan, L.R., and Fosyth, M., Electrochim. Acta, 2001, vol. 46, p. 1657.

    Google Scholar 

  23. Escudero, M.J., Hontanon, E., Schwartz, E., Boutonnet, M., and Daza, L., J. Power Sources, 2002, vol. 106, p. 206.

    Google Scholar 

  24. Jun, M. and Ikuo, A., Abstracts of Papers, 53rd Annual Meeting of ISE, Düsseldorf, September 15–20, 2002, p. 286.

  25. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (The Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  26. Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Comprehensive Treatise of Electrochemistry, Yeager, E. and Bockris, J., Eds., New York: Plenum, 1983, vol. 6, p. 356.

    Google Scholar 

  27. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 667.

    Google Scholar 

  28. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1130; 2003, vol. 39, pp. 677, 811, 1476; 2004, vol. 40, p. 185.

    Google Scholar 

  29. Rostokin, V.I. and Chirkov, Yu.G., Elektrokhimiya, 2004, vol. 40, p. 197.

    Google Scholar 

  30. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1437.

    Google Scholar 

  31. Fizicheskii entsiklopedicheskii slovar' (Encyclopedic Dictionary of Physics), Moscow: Sovetskaya Entsyklopediya, 1960, vol. 1, p. 622.

  32. Eikerling, M. and Kornyshev, A.A., J. Electroanal. Chem., 1998, vol. 453, p. 89.

    Google Scholar 

  33. Antropov, L.I., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Moscow: Vysshaya Shkola, 1965, p. 352.

    Google Scholar 

  34. Gottesfeld, S. and Zawodzinski, T.A., in Advances in Electrochemical Science and Engineering, Alkire, R.C., Gerischer, H., Kolb, D.M., and Tobias, C.W., Eds., Weinheim: Wiley-VCH, 1997, vol. 5, p. 195.

    Google Scholar 

  35. Dhar, H.P., Pat. 5318863 (US), 1994.

  36. Dhar, H.P., Lee, J.H., and Lewinski, K.A., Proc., Fuel Cell Seminar, Orlando (FL), 1996, p. 583.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Optimizing Weights of Platinum in the Active Layer of the Cathode of a Hydrogen–Oxygen Fuel Cell with a Solid Polymer Electrolyte. Russian Journal of Electrochemistry 40, 898–908 (2004). https://doi.org/10.1023/B:RUEL.0000041356.78555.dc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000041356.78555.dc

Navigation