Skip to main content
Log in

A Catecholic Siderophore Produced by the Thermoresistant Bacillus licheniformis VK21 Strain

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Thermophilic and thermoresistant strains of bacilli were screened on a medium containing Chrome Azurol S for the producers of siderophores. It was found that the Bacillus licheniformis VK21 strain dramatically increases secretion of the metabolite, a chelator of Fe3+, in response to addition of manganese(II) salts. The growth of the producer on a minimal medium containing MnSO4 under the conditions of iron deficiency is accompanied by the accumulation of a catecholic product, the content of which reaches maximum at the beginning of the stationary growth phase of culture. In the presence of FeCl3, the amount of the catecholic product in the medium considerably decreases. The siderophore, called SVK21, was isolated from the cultural medium and purified by reversed phase HPLC, and its siderophore function was confirmed by the test for the restoration of growth of producer cells in a medium containing EDTA. The UV spectrum of the siderophore has absorption maxima at 248 and 315 nm. According to the amino acid analysis and NMR spectrometry, the metabolite SVK21 is 2,3-dihydroxybenzoyl-glycyl-threonine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neilands, J.B., Structure and Bonding, 1984, vol. 58, pp. 1–24.

    Google Scholar 

  2. Neilands, J.B., J. Biol. Chem., 1995, vol. 270, pp. 26723–26726.

    Google Scholar 

  3. Hider, R.C., Structure and Bonding, 1984, vol. 58, pp. 25–87.

    Google Scholar 

  4. Maksimova, N.P., Blazhevich, O.V., Lysak, V.V., and Fomichev, Yu.K., Mikrobiologiya, 1994, vol. 63, pp. 1038–1044.

    Google Scholar 

  5. Drechsel, H. and Jung, G., J. Pept. Sci., 1998, vol. 4, pp. 147–181.

    Google Scholar 

  6. Marahiel, M.A., Stachelchaus, T., and Mootz, H.D., Chem. Rev., 1997, vol. 97, pp. 2651–2673.

    Google Scholar 

  7. Konz, D. and Marahiel, M.A., Chem. Biol., 1999, vol. 6, pp. 39–48.

    Google Scholar 

  8. Meyer, J.-M., Arch. Microbiol., 2000, vol. 174, pp. 135–142.

    Google Scholar 

  9. Bultreys, A., Gheysen, I., Maraite, H., and De Hoffmann, E., Appl. Env., Microbiol., 2001, vol. 67, pp. 1718–1727.

    Google Scholar 

  10. O'Brian, I.G. and Gibson, F., Biochim. Biophys. Acta, 1970, vol. 215, pp. 393–402.

    Google Scholar 

  11. Pollack, J.R. and Neilands, J.B., Biochem. Biophys. Res. Commun., 1970, vol. 38, pp. 989–992.

    Google Scholar 

  12. Ong, S.A., Peterson, T., and Neilands, J.B., J. Biol. Chem., 1979, vol. 254, pp. 1860–1865.

    Google Scholar 

  13. Page, W.J. and von Tigerstrom, M., J. Gen. Microbiol., 1988, vol. 134, pp. 453–460.

    Google Scholar 

  14. Haag, H., Hantke, K., Drechsel, H., Stojiljkovic, I., Jung, G., and Zähner, H., J. Gen. Microbiol., 1993, vol. 139, pp. 2159–2165.

    Google Scholar 

  15. Yamamoto, S., Okujo, N., Fujita, Y., Saito, M., Yoshida, T., and Shinoda, S., J. Biochem., 1993, vol. 113, pp. 538–544.

    Google Scholar 

  16. Mullis, K.B., Pollack, J.R., and Neilands, J.B., Biochemistry, 1971, vol. 10, pp. 4894–4898.

    Google Scholar 

  17. Wong, D.K., Gobin, J., Horwitz, M.A., and Gibson, B.W., J. Bacteriol., 1996, vol. 178, pp. 6394–6398.

    Google Scholar 

  18. Fiedler, H.P., Krastel, P., Müller, J., Gebhardt, K., and Zeeck, A., FEMS Microbiol. Lett., 2001, vol. 196, pp. 147–151.

    Google Scholar 

  19. Peters, W.J. and Warren, R.A.J., J. Bacteriol., 1968, vol. 95, pp. 360–368.

    Google Scholar 

  20. May, J.J., Wendrich, T.M., and Marahiel, M.A., J. Biol. Chem., 2001, vol. 276, pp. 7209–7217.

    Google Scholar 

  21. Guerry, P., Perez-Casal, J., Yao, R., McVeigh, A., and Trust, T.J., J. Bacteriol., 1997, vol. 179, pp. 3997–4002.

    Google Scholar 

  22. Schwyn, B. and Neilands, J.B., Anal. Biochem., 1987, vol. 160, pp. 47–56.

    Google Scholar 

  23. Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P., and Helmann, J.D., Mol. Microbiol., 1998, vol. 29, pp. 189–198.

    Google Scholar 

  24. Inaoka, T., Matsumura, Y., and Tsuchido, T., J. Bacteriol., 1998, vol. 180, pp. 3697–3703.

    Google Scholar 

  25. Touati, D., Arch. Biochem. Biophys., 2000, vol. 373, pp. 1–6.

    Google Scholar 

  26. Cornish, A.S. and Page, W.J., Microbiology, 1998, vol. 144, pp. 1747–1754.

    Google Scholar 

  27. Dussurget, O., Rodriguez, M., and Smith, I., Mol. Microbiol., 1996, vol. 22, pp. 535–544.

    Google Scholar 

  28. Rioux, C., Jordan, D.C., and Rattray, J.B.M., Anal. Biochem., 1983, vol. 133, pp. 163–169.

    Google Scholar 

  29. Walsh, B.L. and Warren, R.A.J., Can. J. Microbiol., 1971, vol. 17, pp. 175–177.

    Google Scholar 

  30. Barnum, D.W., Anal. Chem. Acta, 1977, vol. 89, pp. 157–166.

    Google Scholar 

  31. Dawson, R., Elliott, D., Elliott, W., and Jones, K., Data for Biochemical Research, Oxford: Clarendon, 1986. Translated under the title Spravochnik biokhimika, Moscow: Mir, 1991

    Google Scholar 

  32. Rance, M., Sorensen, O.W., Bodenhausen, G., Wagner, C., Ernst, R.R., and Wüthrich, K., Biochem. Biophys. Res. Commun., 1983, vol. 117, pp. 479–485.

    Google Scholar 

  33. Bax, A. and Davis, D.G., J. Magn. Reson., 1985, vol. 65, pp. 355–366.

    Google Scholar 

  34. Wagner, R. and Berge, S., J. Magn. Reson., 1996, vol. 123, pp. 229–232.

    Google Scholar 

  35. States, D.J., Habercorn, R.A., and Ruben, D.J., J. Magn. Reson., 1982, vol. 48, pp. 286–292.

    Google Scholar 

  36. Piotto, M., Saudek, V., and Sklenar, V., J. Biomol. NMR, 1992, vol. 2, pp. 661–665.

    Google Scholar 

  37. Bax, A., Griffey, R.H., and Hawkins, B.L., J. Magn. Reson., 1983, vol. 55, pp. 301–315.

    Google Scholar 

  38. Bax, A. and Subramania, S., J. Magn. Reson., 1986, vol. 67, pp. 565–569.

    Google Scholar 

  39. Bax, A. and Summers, M.F., J. Am. Chem. Soc., 1986, vol. 108, pp. 2093–2094.

    Google Scholar 

  40. Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfeld, E., Markley, J.L., and Sykes, B.D., J. Biomol. NMR, 1995, vol. 6, pp. 135–140.

    Google Scholar 

  41. Wüthrich, K., NMR of Proteins and Nucleic Acids, New York: Wiley, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temirov, Y.V., Esikova, T.Z., Kashparov, I.A. et al. A Catecholic Siderophore Produced by the Thermoresistant Bacillus licheniformis VK21 Strain. Russian Journal of Bioorganic Chemistry 29, 542–549 (2003). https://doi.org/10.1023/B:RUBI.0000008894.80972.2e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUBI.0000008894.80972.2e

Navigation