Skip to main content
Log in

Subtilosin A production by Bacillus subtilis KATMIRA1933 and colony morphology are influenced by the growth medium

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacillus subtilis KATMIRA1933, cultured in modified MRS (de Man, Rogosa, and Sharpe) broth without peptone (animal-free [AF]-MRS), produced subtilosin A at levels similar to, or even higher, than when cultured in MRS broth with peptone. AF-MRS medium contained 2.5 % (w/v) Martone or 2.5 % (w/v) cottonseed hydrolysate instead of peptone and 0.25 % (w/v) bacteriological grade yeast extract instead of normal yeast extract. An increase in cell numbers, accompanied by an increase in subtilosin activity, was recorded when cells were grown in AF-MRS supplemented with 0.4 % (w/v) K2HPO4 and 0.02 % (w/v) MgSO4. Subtilosin production increased from 30 arbitrary units (AU) mL−1 in a static culture to 320 AU mL−1 when cells were agitated on an orbital shaker at 300 rpm. A further increase in subtilosin production, from 150 AU mL−1 to 240 AU mL−1, was recorded when cells were cultured in AF-MRS supplemented with 2.0 % (w/v) amylopectin or 2.0 % (w/v) maltodextrin. Slightly higher cell densities were recorded in the presence of maltodextrin. Two colony types, one with a flat (“typical”), sprawling morphology and the other elevated (“atypical”), were isolated from cells grown in AF-MRS broth. Higher subtilosin levels (213 AU mL−1) were recorded from cells grown in AF-MRS broth supplemented with MgSO4 as compared to cells grown in the absence of MgSO4 (150 AU mL−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abusham RA, Rahman RN, Salleh AB, Basri M (2009) Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microb Cell Factories 8:20. doi:10.1186/1475-2859-8-20

  • Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603

    CAS  PubMed  Google Scholar 

  • Bonelli RR, Schneider T, Sahl HG, Wiedemann I (2006) Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother 50:1449–1457. doi:10.1128/AAC.50.4.1449-1457.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buensanteai N, Yuen G, Prathuangwong S (2008) The biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J Agric Sci 41:101–116

    Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20. doi:10.1016/S0168-1605(01)00560-8

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. doi:10.1038/nrmicro1273

    Article  CAS  PubMed  Google Scholar 

  • FDA (2009) FY 2009 Congressional Justifications Online Performance Appendix. Available at http://www.fda.gov/AboutFDA/ReportsManualsForms/Reports/BudgetReports/2009FDABudgetSummary/ucm115135.htm. Accessed 28 Jan 2011

  • Gabriel H, Franz CM, Omar BN, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol 35:201–232. doi:10.1111/j.1574-6976.2010.00244.x

  • Gangadharan D, Sivaramakrishnan S, Madhavan Nampoothiri K, Pandey A (2006) Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol Biotechnol 44:269–274

    CAS  Google Scholar 

  • Habib SMA, Fakhruddin ANM, Begum S, Ahmed MM (2011) Production and characterization of thermo-alkaline extracellular protease from Halobacterium sp. AF1. Asian J Biotechnol 3:345–356. doi:10.3923/ajbkr.2011.345.356

    Article  Google Scholar 

  • Han B, Yu Z, Liu B, Ma Q, Zhang R (2011) Optimization of bacteriocin production by Lactobacillus plantarum YJG, isolated from the mucosa of the gut of healthy chickens. Afr J Microbiol Res 5:1147–1155. doi:10.5897/AJMR10.643

    CAS  Google Scholar 

  • Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol 191:5690–5696. doi:10.1128/JB.00541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juarez Tomás MS, Bru E, Wiese B, De Ruiz Holgado AAP, Nader-Macias ME (2002) Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. J Appl Microbiol 93:714–724. doi:10.1046/j.1365-2672.2002.01753.x

    Article  PubMed  Google Scholar 

  • Karlyshev AV, Melnikov VG, Chikindas ML (2014) Draft genome sequence of Bacillus subtilis strain KATMIRA1933. Genome Announcements 2(3):e00619-14. doi:10.1128/genomeA.00619-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawulka K, Sprules T, McKay RT, Mercier P, Diaper CM, Zuber P, Vederas JC (2003) Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to α-carbons of phenylalanine and threonine. J Am Chem Soc 125:4726–4727. doi:10.1021/ja029654t

    Article  CAS  PubMed  Google Scholar 

  • Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtiosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43:3385–3395. doi:10.1021/bi0359527

    Article  CAS  PubMed  Google Scholar 

  • Klykov SP, Kurakov VV, Vilkov VB, Demidyuk IV, Gromova TY, Skladnev DA (2011) A cell population structuring model to estimate recombinant strain growth in a closed system for subsequent search of the mode to increase protein accumulation during protealysin producer cultivation. Biofabrication 3(2011):045006. doi:10.1088/1758-5082/3/4/045006, 12pp

    Article  CAS  PubMed  Google Scholar 

  • Leal-Sanchez MV, Jimenez-Diaz R, Maldonado-Barragan A, Garrido-Fernandez A, Ruiz-Barba JL (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl Environ Microbiol 68:4465–4471. doi:10.1128/AEM.68.9.4465-4471.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy F, De Vuyst L (1999) Temperature and pH conditions that prevail during the fermentation of sausages are optimal for the production of the antilisterial bacteriocin sakacin K. Appl Environ Microbiol 65:974–981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunbanwo ST, Sanni AI, Onilude AA (2003a) Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. Afr J Biotechnol 2:179–184. doi:10.5897/AJB2003.000-1037

    Article  CAS  Google Scholar 

  • Ogunbanwo ST, Sanni AI, Onilude AA (2003b) Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. Afr J Biotechnol 2:219–227. doi:10.5897/AJB2003.000-1045

    Article  CAS  Google Scholar 

  • Quintana VM, Torres NI, Wachsman MB, Sinko PJ, Castilla V, Chikindas ML (2014) Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J Appl Microbiol 117:1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy NS, Nimmagadda A, Sambasiva Rao KRS (2003) An overview of the microbial α-amylase family. Afr J Biotechnol 2:645–648. doi:10.5897/AJB2003.000-1119

    Article  CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:17–130. doi:10.1146/annurev.micro.56.012302.161024

    Article  Google Scholar 

  • Sharma S, Garg AP, Singh G (2010) Optimization of fermentation conditions for bacteriocin production by Lactococcus lactis CCSULAC1 on modified MRS medium. Int J Dairy Sci 5:1–9. doi:10.3923/ijds.2010.1.9

    Article  CAS  Google Scholar 

  • Sutyak Noll K, Sinko PJ, Chikindas ML (2011) Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob Proteins 3:41–47. doi:10.1007/s12602-010-9061-4

    Article  Google Scholar 

  • Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J Appl Microbiol 104:1067–1074. doi:10.1111/j.1365-2672.2007.03626.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tambekar DH, Bhutada SA (2010) Studies on antimicrobial activity and characteristics of bacteriocins produced by L actobacillus strains isolated from milk of domestic animals. Internet J Microbiol 8

  • Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A (2005) Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 137:38–51. doi:10.1016/j.chemphyslip.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  • Torres NI, Sutyak Noll K, Xu S, Li J, Huang Q, Sinko PJ, Wachsman MB, Chikindas ML (2013) Safety, formulation, and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Proteins 5:26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinetta V, Rollini M, Manzoni M (2008) Development of a low cost culture medium for sakacin A production by L. sakei. Process Biochem 43:1275–1280. doi:10.1016/j.procbio.2008.07.011

    Article  CAS  Google Scholar 

  • Turovskiy Y, Sutyak Noll K, Chikindas ML (2011) The etiology of bacterial vaginosis. J Appl Microbiol 110:1105–1128. doi:10.1111/j.1365-2672.2011.04977.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venil C, Lakshmanaperumalsamy P (2009) Taguchi experimental design for medium optimization for enhanced protease production by Bacillus subtilis HB04. eJST 13:1–10

    Google Scholar 

  • Xie J, Zhang R, Shang C, Guo Y (2009) Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr J Biotechnol 8:5611–5619. doi:10.5897/AJB09.789

    Google Scholar 

  • Yusran, Weinmann M, Römheld V, Müller T (2010) The effects of plant growth promoting rhizobacteria on healthy plant growth of tomato affected by soil sickness. In ‘Soil Solutions for a Changing World, Proceedings of the 19th World Congress of Soil Science’. Brisbane, Australia. Published on DVD

Download references

Acknowledgments

This research was sponsored by the Bill and Melinda Gates Foundation Grand Challenges Exploration Phase 5 Grant OPP1025200 “The natural spermicidal antimicrobial subtilosin controls vaginal infections” (MLC), and the Rutgers University Life Science Commercialization Fund "Formulation and production of an antimicrobial peptide for control of bacterial vaginosis" (2010–2011) (MLC and OAK). OAK was a recipient of the NSF Scholarship in Science, Technology, Engineering, and Mathematics (S-STEM) for Biotechnology. MLC is grateful to Jiangsu Sinoyoung Biopharmaceutical Co., Ltd. for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Chikindas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforova, O.A., Klykov, S., Volski, A. et al. Subtilosin A production by Bacillus subtilis KATMIRA1933 and colony morphology are influenced by the growth medium. Ann Microbiol 66, 661–671 (2016). https://doi.org/10.1007/s13213-015-1149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1149-3

Keywords

Navigation